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incorporating biomarkers to predict the
bladder cancer risk associated with
occupational exposure to aromatic amines:
a pilot study
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Abstract

Background: No etiological prediction model incorporating biomarkers is available to predict bladder cancer risk
associated with occupational exposure to aromatic amines.

Methods: Cases were 199 bladder cancer patients. Clinical, laboratory and genetic data were predictors in logistic
regression models (full and short) in which the dependent variable was 1 for 15 patients with aromatic amines
related bladder cancer and 0 otherwise. The receiver operating characteristics approach was adopted; the area
under the curve was used to evaluate discriminatory ability of models.

Results: Area under the curve was 0.93 for the full model (including age, smoking and coffee habits, DNA adducts, 12
genotypes) and 0.86 for the short model (including smoking, DNA adducts, 3 genotypes). Using the “best cut-off” of
predicted probability of a positive outcome, percentage of cases correctly classified was 92% (full model) against 75% (short
model). Cancers classified as “positive outcome” are those to be referred for evaluation by an occupational physician for
etiological diagnosis; these patients were 28 (full model) or 60 (short model). Using 3 genotypes instead of 12 can double
the number of patients with suspect of aromatic amine related cancer, thus increasing costs of etiologic appraisal.

Conclusions: Integrating clinical, laboratory and genetic factors, we developed the first etiologic prediction model for
aromatic amine related bladder cancer. Discriminatory ability was excellent, particularly for the full model, allowing
individualized predictions. Validation of our model in external populations is essential for practical use in the clinical setting.
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Background
Bladder cancer (BC) accounts for 5–10% of all malignan-
cies among males in Europe and USA [1]. The most im-
portant risk factors are smoking, genetic susceptibility
and occupational exposure [2].
An excess BC risk was identified since the early 1950s

in the rubber industry and was associated to the use of
b-naphthylamine [3]. Small excesses of BC risk have

continued to be observed even in more recent studies of
rubber workers published in the 1980s and 1990s [4].
Other aromatic amines (AAs) have been shown to be
carcinogenic [5]. Nonetheless, occupational exposure to
AAs has continued due to their industrial and commer-
cial value [6]. AAs exposure can occur at lower extent in
many other occupational settings. A systematic review of
Italian studies estimated that 4 to 24% of BCs are
attributable to occupational exposure [7]. BC cases
effectively compensated by INAIL were 440 from
2000 to 2006, on average 63 per year [8]. Because in
Italy incident cases of BC in 2006 were about 17,000/
year in males [9], the expected cases of occupational
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disease should be between 680 (17,000×0.04) and
4080 (17,000×0.24), and underreporting between 91%
((63/680) -1) and 98% ((63/4080) -1).
There is a strong genotoxic mechanism for carcino-

genicity of several AAs, and multiple metabolic pathways
as well as many polymorphic genes have been found to
be implicated in the activation of AAs into DNA-
reactive intermediates [10]. Over the last 20 years, nu-
merous biomarkers have been investigated in workers
exposed to AAs [6]. A key biomarker are the DNA ad-
ducts which are considered as the ‘biologically effective
dose’ because they represent an integrated measure of
carcinogen exposure, absorption, distribution, metabol-
ism and DNA repair [11].
Few studies have combined clinical factors with blood

and urinary biomarkers into risk profiles that can be
used to predict the likelihood of etiological diagnosis of
BC [12–16]. To the best of our knowledge, no study has
tried to use biomarkers to predict the etiological diagno-
sis of occupational BC. The causal attribution to occupa-
tion usually relies on thorough occupational history
collection, pertinent and documented risk assessment,
availability of industrial hygiene measurements, appraisal
and reference to evidence based literature data; to reach
etiological diagnosis, the likely best option is to refer pa-
tients to occupational health specialists. An etiologic
prediction model tool divides an initial population of BC
cases into a smaller fraction of ‘positives’ that should be
referred to an occupational health specialist for etiologic
assessments, and a larger portion of ‘negatives’ that
should no longer be considered. To be effective, an
algorithm should increase the number of single BC cases
receiving an etiologic ascertainment cases, therefore
leading to a decrease of underreporting and under-
compensation; eventually, such actions are beneficial for
the individual, as well as for public health.
The aim of the present study was therefore to find a

biomarker profile enabling to discriminate AA-related
BC from non-AA-related BC and evaluate the algorithm
with the approach of Receiver Operator Characteristic
(ROC) curves, within the framework of a well-
established case-control study on BC.

Methods
Study design and population
The present study includes the “cases” arm stemming
from of an earlier hospital-based case-control study fully
described in previous publications [17–20]. Inclusion
criteria were being male, aged 20–80, Italian. Cases were
all 199 newly diagnosed, histologically confirmed BC
patients, admitted to the Urology Departments of two
large hospitals from 1997 to 2000. Controls were all 214
non-neoplastic urological patients matched to cases by
age (±5 years), period and hospital of admission. A

written informed consent was obtained from each sub-
ject; the local Ethical Committee approved the study.

Data collection
Peripheral blood lymphocytes (PBLs) were collected and
automated DNA extraction was performed according to
Extragen kit (Extragen BC by TALENT) [17]. Genotyp-
ing of glutathione S-transferase M1 (GSTM1) null,
GSTT1 null, GSTP1 I105V, N-acetyltransferase 1
(NAT1) fast, NAT2 slow, cytochrome P450 1B1
(CYP1B1) V432 L, sulfotransferase 1A1 (SULT1A1)
R213H, myeloperoxidase (MPO) G-463A, catechol-O-
methyltransferase (COMT) V108 M, manganese super-
oxide dismutase (MnSOD) A-9 V, NAD(P)H:quinone
oxidoreductase (NQO1) P187S, X-ray repair cross-
complementing group 1 (XRCC1) R399Q, XRCC3
T241 M, and xeroderma pigmentosum complementation
group (XPD) K751Q polymorphisms was assessed using
Amplification Refractory Mutation System assay [17].
Bulky-DNA adducts were detected by 32P–postlabeling
after Nuclease P1 enrichment and labelled adducts reso-
lution on Thin Layer Chromatography (TLC) [20]. DNA
adducts levels were measured as relative adduct level per
108 nucleotides. A trained interviewer collected informa-
tion on demographic variables, lifetime smoking history,
coffee and other liquid consumption, dietary habits, life-
time occupation history by questionnaire. Job titles and
individual activities, as well as occupational exposures to
AAs, were blindly coded by an occupational physician
according to methodology described in previous publica-
tion [21]. Occupations involving exposure to AAs were
attributed to 11 International Standard Classification of
Occupations (ISCO, International Labour Office, 1968)
codes for job tasks (1–61.30: Painter, Artist; 3–70.20:
Mail Sorting Clerk; 5–70.30: Barber-Hairdresser; 7–
41.40: Mixing- and Blending-Machine Operator, Chem-
ical and Related Processes; 8–01.10: Shoemaker, General;
8–11.20: Cabinetmaker; 8–73.70: Vehicle Sheet-Metal
Worker; 9–01.35: Rubber Moulding-Press Operator; 9–
31.20: Building Painter; 9–39.20: Brush-Painter, except
Construction; 9–39.30: Spray-Painter, except Construc-
tion) and 11 International Standard Industrial Classifica-
tion of all Economic Activities (ISIC, United Nations,
1968) codes for industrial activities (3240: Manufacture
of footwear, except vulcanized or moulded rubber or
plastic footwear; 3320: Manufacture of furniture and fix-
tures, except primarily of metal; 3521: Manufacture of
paints, varnishes and lacquers; 3559: Manufacture of
rubber products not elsewhere classified; 3819: Manufac-
ture of fabricated metal products except machinery and
equipment not elsewhere classified; 3824: Manufacture
of special industrial machinery and equipment except
metal- and wood-working machinery; 3843: Manufacture
of motor vehicles; 5000: Construction; 9415: Authors,
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music composers and other independent artists not else-
where classified; 9513: Repair of motor vehicles and mo-
torcycles; 9591: Barber and beauty shops).

Best-case definition
We investigated exposure to AA in all jobs held dur-
ing lifetime, carefully assessing the level and the tem-
poral aspects of such exposure according to
standardized procedures [21]. Then, in order to
achieve an optimal case definition [22], the critical
values for time since first exposure (TSFE) and time
since last exposure (TSLE) were chosen based on lit-
erature findings. In a cohort of Italian dyestuff
workers [23], the risk of BC mortality decreased with
increasing TSLE and became non-significant at
≥30 years since last exposure. Out of 19 BC patients
observed in a Japanese dyestuff-plant, 17 showed a
TSFE ≥20 years and 18 a TSLE ≤35 years [24]. Thus,
the criteria for best-case definition were: TSFE higher
than 20 years; TSLE lower than 35 years; length of
exposure of at least 1 year; any value of cumulative
exposure to AAs. The 15 BC cases complying with
the above criteria were considered AA-related bladder
cancer.

Variables and statistical analyses
Smoking was a categorical variable with three levels:
nonsmokers; former smokers from >20 years; current
smokers and former smokers from less than 20 years.
Life-long time-weighted average of cups/day of coffee
and age at diagnosis were broken down in four clas-
ses according to the tertiles. DNA adducts were
transformed in logarithm, and all values >1 were
coded as 1 and otherwise as 0. Genetic biomarkers
were coded as 0/1 variables as follows: GSTM1
(“NULL” variant =1, otherwise = 0); GSTP1 (“1A/
1A” = 0, otherwise = 1); GSTT1 (“NULL” = 1); NAT1
(“S” = 1); NAT2 (“S” = 1); MPO (“A/A” = 1); COMT
(“WW” = 1); MnSOD (“WW” = 1); NQO1 (“MM” = 1);
CYP1B1 (“WW” = 0); XRCC1 (“G/G” = 0); XRCC3
(“C/C” = 0); XPD (“A/A” = 0). All the above variables
became the predictors in a model of logistic regres-
sion in which the dependent variable was 1 for the
15 patients (cases) with AA-related BC (see above)
and 0 for the other 184 BC patients (controls). A
stepwise selection of independent variables was made
using 0.10 as “p-to-enter” and 0.15 as “p-to-remove”.
Therefore, from the same sample of 199 cases of BC,
two algorithms were obtained (full model and short
model) reporting for each regressor the OR with 95%
CI and p-value. The best fitting model was chosen
with measures of predictive power (R-square and area
under the ROC curve) and GOF statistics (Pearson
chi-square and Hosmer-Lemeshow test). The criterion

was “the higher the better” for the former, and “p-
value above 0.05” for the latter. The graphical outputs
of the ROC curves were obtained and the AUC was
interpreted according to the classification proposed:
0.5 (not informative test); 0.5–0.70 (inaccurate test);
0.7–0.9 (moderately accurate test); 0.9–1.0 (highly ac-
curate test); 1 (perfect diagnostic test) [25]. A statis-
tical test comparing the equality of AUCs was also
calculated. Lastly, using the prediction equation we
obtained a new variable containing the model-
predicted probability of a positive outcome; the same
computer program provided the “best cut-off” of pre-
dicted probability [26] that maximized the difference
between BC patients with or without AA-related dis-
ease in both models. Using such value we built the
classification table (true positive, false positive, true
negative and false negative) from which we calculated
sensitivity, specificity, positive and negative predictive
values and diagnostic accuracy of each model. Purely
statistical measures for comparing two risk prediction
models have, however, limited use for medical deci-
sion making because they do not incorporate harms
and benefits related to treatment decisions arising
from the risk prediction model [27]. To evaluate
whether clinical use of prediction models, diagnostic
tests, and molecular markers would do more good
than harm, a simple type of decision analysis (net
benefit, NB, approach) has been used [28]. The NB
depends on the benefit B, the cost C, the prevalence
P of the outcome, and the risk threshold, R, which
expresses the model’s classification accuracy, that is
the ability of the risk model to assign high risks to
cases and low risks to controls. The key quantity is
R, which is a function of the harms and benefits of
the possible outcomes without detailed specification
of harms and benefits [29]. Therefore, the NB to the
population of using the risk model is:

NBR ¼ TPRR � Pð Þ− R
1−R

� �
� FPRR � 1−Pð Þ

� �

where:
TPRR = true positive rate, also called sensitivity;
FPRR = false positive rate, also called one minus

specificity;
P = probability of diseases at a given time, also called

prevalence;
R = risk threshold, also called model-predicted prob-

ability of a positive outcome.
Net benefit can be plotted against a range of R, in

what is called a “decision curve”. Decision curves are
now widely used in the literature [28]. In the present
study, however, wider effects on NB were observed with
variations of P rather than of R.
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Sample size
In the present one-sample study, the sample size was es-
timated based on Fisher’s z test assuming a correlation
0.28 (that between DNA adducts and the 0/1 variable
“presence/absence of occupational AA-related BC”) and
a significance level of 0.05. For a two-sided hypothesis
test, the estimated sample size was 98 or 130 patients
setting the power at 0.80 or 0.90, respectively [30]. The

actual number of BC patients was 199. All statistical
analyses were performed with STATA 13.

Results
Table 1 shows the main characteristics of BC patients
and their distribution by genotypes (only patients with
value set at 1 according to the above definitions). Those
with disease related to AAs showed higher level of

Table 1 Occupational AA-related BC cases and other BC cases by DNA adducts, age, smoking categories, pack-years, coffee consumption
and genotypes

Variables 15 AA-related BC cases 184 other BC cases

Mean (SD) Number (%) Mean (SD) Number (%)

DNA adducts×108 nucleotides (ln) 1.40 (1.5) 0.76 (1.2)

≥1 11 (73.3) 69 (37.5)

Age (years) 60.0 (10.4) 63.4 (11.2)

≤ 56.9 years 7 (46.7) 43 (23.4)

57–65.9 years 3 (20.0) 50 (27.2)

66–70.9 years 3 (20.0) 44 (23.9)

≥ 71 years 2 (13.3) 47 (25.5)

Smoking (categories)

Non Smokers & Ex Smokers quitting >20 years 2 (13.3) 35 (19.0)

Ex Smokers quitting <20 years 1 (6.7) 60 (32.6)

Current smokers 12 (75.0) 87 (47.3)

Pack years (cigarettes smoked lifetime) 31.5 (12.3) 35.6 (26.2)

≤ 18.9 1 (6.7) 46 (25.1)

19–32.9 8 (53.3) 45 (24.6)

33–46.9 4 (26.7) 46 (24.6)

≥ 47 2 (13.3) 47 (25.7)

Coffee consumption (weighted mean) 2.1 (1.7) 2.4 (2.4)

≤ 1 cup/day 6 (40.0) 71 (38.8)

2 cups/day 4 (26.7) 36 (19.7)

3 caps/day 3 (20.0) 32 (17.5)

≥ 4 cups/day 2 (13.3) 44 (24.0)

Genotypes
(legend below)

GSTM1 12 (80.0) 117 (63.9)

GSTT1 3 (20.0) 38 (20.8)

GSTP 5 (33.3) 92 (50.3)

NAT1 4 (26.7) 60 (32.8)

NAT2 10 (66.7) 111 (60.7)

MPO 1 (6.7) 6 (3.3)

COMT 7 (46.7) 132 (72.1)

MnSOD 4 (26.7) 63 (34.4)

CYP1B1 12 (80.0) 156 (82.3)

XRCC1 7 (46.7) 98 (53.4)

XRCC3 6 (40.0) 103 (56.3)

XPD 7 (46.7) 113 (61.8)

GSTM1 Glutathione S-transferase M1, GSTT1 Glutathione S-transferase T1, GSTP1 Glutathione S-transferase P1, NAT1 N-acetyltransferase isozymes 1, NAT2 N-
acetyltransferase isozymes 2, MPO Myeloperoxidase, MnSOD Manganese Superoxide Dismutase, COMT Catechol-O-methyltransferase, CYP1B1 Cytochrome p450
1B1, XRCC1 X-ray repair cross-complementing protein 1, XRCC3 X-ray repair cross-complementing protein 3, XPD xeroderma pigmentosum group D
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adducts, lower mean age (with higher percentage of
youngest subjects) and higher number of smokers.
Except for COMT, GSTM1 and GSTP1 other differences
were insignificant.
Table 2 shows the logistic regression analysis ob-

tained with the full and short models (with the subset
of predictors chosen by the stepwise selection proced-
ure). As expected from distribution of BC cases,
significant ORs were few (DNA adducts and COMT)
in both models. Nonetheless, measures of predictive
power (R-squares and AUCs) were elevated. The full
model seemed more performing, although both
models passed the test and were correctly specified.

Figure 1 shows the ROC curves obtained for the full
and short model; the AUC and its standard error is also
reported. A chi-square test comparing the two AUCs
gave a value of 4.0438, with p = 0.0443, suggesting that
including more variables (algorithm 1) could signifi-
cantly improve the prediction (e.g. probabilities of
occupational AA-related BC). The ROC area of model 1
(= 0.931) fell in the category of highly accurate tests;
however, the cost of such high diagnostic accuracy was
entering the algorithm 12 genotypes together with DNA
adducts and some clinical factors.
Table 3 shows the 15 AA-related BC cases and 184

non-AA-related BC cases, classified as positive and

Table 2 Logistic regression (full and short models)

Variables Classes Full model Short model

OR 95% CI p-value OR 95% CI p-value

Age (years)a 57–65.9 0.12 0.01–0.98 0.048

66–70.9 0.29 0.04–2.25 0.239

≥ 71 0.10 0.01–1.07 0.056

Smokingb Ex-smokers 0.05 0.00–1.47 0.083 0.11 0.01–1.49 0.096

Smokers 1.16 0.16–8.60 0.887 1.56 0.31–7.94 0.589

Coffee consumptionc 2 0.63 0.09–4.64 0.654

3 1.96 0.27–14.24 0.505

≥4 0.05 0.00–0.86 0.039

DNA adductsd ≥1 19.20 2.52–146. 0.004 6.02 1.66–21.8 0.006

Genotypese GSTM1 3.01 0.51–17.7 0.223

GSTT1 0.29 0.04–1.92 0.198

GSTP1 0.19 0.03–1.08 0.061 0.41 0.12–1.38 0.150

NAT1 0.27 0.05–1.52 0.139

NAT2 2.55 0.52–12.6 0.25

MPO 1.38 0.03–65.1 0.871

COMT 0.05 0.01–0.39 0.005 0.21 0.06–0.72 0.014

MnSOD 0.30 0.06–1.49 0.142

CYP1B1 0.27 0.03–2.42 0.24

XRCC1 0.97 0.22–4.22 0.966

XRCC3 0.38 0.09–1.68 0.203 0.40 0.12–1.34 0.139

XPD 0.31 0.05–1.81 0.195

Constant term 5.95 0.06–545. 0.439 0.18 0.03–1.30 0.09

Reference groups: apatients with ≤56.9 years; bnon smokers and ex-smokers from >20 years; cpatients with consumption of ≤1 cup/day; dpatients
with <1 (logarithm values) of DNA adducts×108 nucleotides; epatients with genotype values set at 0 (see text for definition).

Measures of fit for logistic regression Full model Short model

R-square 0.389 0.228

Area under the ROC curve 0.931 0.856

Pearson chi-square test: p-value 0.087 0.826

no. covariates 197 44

Hosmer-Lemeshow test: p-value 0.130 0.942

no. groups 10 10
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negative according to the full or short model, always
using the “best cut-off” of predicted probability provided
by computer program to maximize the difference be-
tween BC patients with or without AA-related disease.
With respect to the full model, the short one reduced
the percentage of cases correctly classified (150/
199 = 75% against 182/199 = 92%) by decreasing specifi-
city (137/184 = 75% versus 169/184 = 92%). BC cases
classified as ‘positive’ are those to be referred for evalu-
ation by an occupational physician for etiological
diagnosis; these patients were 28 (full model) or 60
(short model). Therefore, using 3 instead of 12 geno-
types can double the number of patients to be referred
for etiologic diagnosis. BC cases classified as ‘negative’
should be leaved out from etiologic workup. Since the
negative predictive value was about 99% (169/171 ac-
cording to the full model and 137/139 according to the
short model), the model may be used to identify patients
who can carefully avoid further evaluation. The other

side of the coin was that two out of 15 true AA-related
BC patients were classified as ‘false negative’ cases,
which like the ‘true negatives’ should not undergo etio-
logic assessment of their disease. The NB per 100
patients was +4.9 and +4.1 in the left and right panel,
respectively, when using panel-specific sensitivity, one
minus specificity and the risk threshold R, along with
the prevalence of AA-related BC, which was always
0.0754 (= 15/199). Comparing the left and right panel,
values of NB were close in spite of divergent values of R.
Table 4 shows the results of a different strategy in

which we purposely reduced the “best cut-off” of pre-
dicted probability supplied by computer program in
order to reduce the false negatives (1 in place of 2).
The cost balancing the benefit (decrease of false nega-
tives and increase of true positives) was a higher
number of positives (from 28 to 48 with full algo-
rithm; from 60 to 87 with short algorithm) requiring
referral to an occupational physician. The NB per 100
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Fig. 1 ROC curves obtained with the full model (left) and short model (right) of logistic regression; the AUC and its standard error is reported
below the graph

Table 3 Classification of 15 AA-related BC cases (D) and 184 other BC cases (−D) according to the full model (left panel) or short
model (right panel) of logistic regression

Classified True Total Classified True Total

D –D D –D

Positive 13 15 28 Positive 13 47 60

Negative 2 169 171 Negative 2 137 139

Total 15 184 199 Total 15 184 199

Sensitivity 86.7% Sensitivity 86.7%

Specificity 91.9% Specificity 74.5%

Positive predictive value 46.4% Positive predictive value 21.7%

Negative predictive value 98.8% Negative predictive value 98.6%

Correctly classified 91.5% Correctly classified 75.4%

Net Benefit per 100 patients +4.9 Net Benefit per 100 patients + 4.1

The risk threshold R (optimal cut-off point of predicted probability provided by the program) was 0.181 and 0.093 in the left and right panel, respectively. Net
Benefit per 100 patients calculated from the above values
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patients was +5.3 and +5.1 in the left and right panel,
respectively, when using panel-specific sensitivity, one
minus specificity and the risk threshold R, along with
the prevalence of AA-related BC, which was always
0.0754 (= 15/199). Comparing the left and right
panel, values of NB were close in spite of the diver-
gent values of R.
The little effect on NB with variations of R is also

shown in Fig. 2, which depicts NBs as squares and
hollow squares (corresponding to R values of 0.181
and 0.093, respectively, see Table 3), or as circles and
hollow circles (corresponding to R values of 0.090
and 0.050, respectively, see Table 4). By contrast
wider differences and a steep increasing trend of NBs
were found with prevalence of AA-related BC going
from 0.0 to about 0.14. When prevalence approaches
to 0.0, the sign of NBs became negative indicating
costs that overwhelm benefits.

Discussion
With the aim of finding a biomarker profile enabling
to discriminate AA-related BC from non-AA-related
BC, an etiologic prediction model was developed inte-
grating 12 genotypes, DNA adducts, age, smoking and
coffee consumption, while using 15 AA-related BC
cases. The procedure classified the whole 199 BC pa-
tients in 28 positives and 171 negatives. The latter
could be leaved out from etiologic workup, the
former are those to be referred for etiological diagno-
sis. The cases correctly classified were 92% (182/199)
and the discriminatory ability was excellent
(AUC = 0.93). Examining 3 rather than 12 genotypes
the cost of etiologic assessment increased because 60
(instead of 28) positives should receive a further test-
ing (see Table 3, left and right panel). Nevertheless,
there were two false negative cases. To overcome this
detrimental outcome we used a second strategy (a
lower risk threshold) that involved 1 false negative in
place of 2 but increased the cost of diagnostic
workup since the positives became 48 (instead of 28)
or 87 (instead of 60) according to the full or short
model, respectively (see Table 4, left and right panel).
With the second strategy, despite the lower percent-
age of cases correctly classified and regardless of
AUC reduction to values (0.7 to 0.9) indicating a
moderately accurate test, the benefits were higher
than the costs, as it can be seen by comparing the
values of NB reported in the Tables 3 and 4.
In our earlier study [20], occupational AAs exposure

was found to be positively associated with both BC risk
(p = 0.041) and DNA adducts (p = 0.028). Since they
were not associated with BC risk, DNA adducts were
likely biomarkers of exposure. However, the responsible
electrophilic substance could not be identified because
adducts detected by the nuclease P1 method of 32P–
post-labeling are not specific.

Table 4 Classification of 15 AA-related BC cases (D) and 184 other BC cases (−D) according to the full model (left panel) or short
model (right panel) of logistic regression

Classified True Total Classified True Total

D –D D –D

Positive 14 34 48 Positive 14 73 87

Negative 1 150 151 Negative 1 111 112

Total 15 184 199 Total 15 184 199

Sensitivity 93.3% Sensitivity 93.3%

Specificity 81.5% Specificity 60.3%

Positive predictive value 29.2% Positive predictive value 16.1%

Negative predictive value 99.3% Negative predictive value 99.1%

Correctly classified 82.4% Correctly classified 62.8%

Net Benefit per 100 patients + 5.3 Net Benefit per 100 patients + 5.1

The risk threshold R (purposely chosen cut-off point of predicted probability) was 0.09 and 0.05 in the left and right panel, respectively. Net Benefit per 100 patients
calculated from the above values
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Fig. 2 Decision curves of Net Benefit per 100 patients against
different values of prevalence of AA-related BC, separately according
to different values of risk threshold (R), i.e. cut-off point of
predicted probability
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As shown in Table 2, many genotypes have given par-
tial regression coefficients (namely, logarithms of ORs)
that are not statistically significant. Each could be elimi-
nated without significantly affecting the measures of fit
for logistic regression, while the suppression of the
whole set had a major effect. In fact, AUC of 0.931 for
the full model reduced to 0.69 by entering DNA adducts
as single predictor in the logistic regression. This occurs
when the variables are strongly related to one another; if
one is eliminated the other variables of the group act as
substitutes. If, however, the entire group is removed do
not remain other variables to compensate the lack of
them [31]. In view of the above, we considered all re-
gressors to obtain the predicted probability of a positive
outcome, even though it can become difficult to attri-
bute a meaning to each partial regression coefficient.
The etiologic prediction model tool that we have elabo-

rated, enables to divide an initial population into a smaller
fraction of “positives” and a larger portion of “negatives”.
The former could be referred for further diagnostic assess-
ments, the latter should be no longer considered. The
“diagnosis” consists in attributing the disease to an expos-
ure/occupational risk factor; this may happen or might be
necessary in several context, such as individual case ap-
praisal, compensation claims, litigation, health authority en-
quiries. Attributing the disease to an exposure/occupational
risk factor may result in several advantages from clinical,
epidemiological, individual and public health standpoints.
Unfortunately, underreporting to health authorities and
under compensation of occupational cancers are well
known facts [32–34]. The latter evidence strengthens the
need to adopt the second strategy aimed at increase as
much as possible the identification of AA-related BC cases.
All BC patients are hospitalized at some point in time.

Hospital physicians might then face two alternatives
when dealing with a tumor, such as BC, with significant
incidence and prevalence and with relevant attributable
fraction of occupational risk factors: seeking for advice
by an occupational health specialist for the patients or
manage the case by themselves. A non-selective applica-
tion of etiologic workup and appraisal would however
results in a great loss of clinical and preventive oppor-
tunities. In addition to traditional methodology of etio-
logical diagnosis, a reliable option could therefore be the
tool described in this paper that enables discrimination
of BC patients with high probability of occupational BC.
However, attention should be paid to the underlying risk
factors of AA-related bladder cancer. The greater the
local degree of industrial development, the higher the
chance of occurrence of an occupational disease, and the
better the net benefit of using the tool that we have elab-
orated to ascertain this disease (see Fig. 2).
Validation of model in an external population is an es-

sential next step towards practical use in the clinical

setting. External validation requires a multicenter cohort
and a prospective collection of data. At the end of the
study, the individual characteristics of the validation co-
hort are multiplied by the regression coefficients of the
corresponding variables (those obtained in the internal
population) and the products are added to the constant
term of the logistic regression. This value quantifies the
individual predicted probability of having an AA-related
BC. Subsequently, calibration plots are used to graphic-
ally explore the association between predicted probabil-
ities and observed proportions: the points should be
centered along a 45-degree line in the graph [12].

Conclusions
BC cases with occupational AA-related disease can be
individually assessed and stratified based on a predefined
molecular biomarker profile. This tool can help ranking
BC patients for referrals to an occupational physician for
etiologic workup and appraisal. However, practical use
in the clinical setting requires validation of the model in
another population.
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