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Abstract 

Background Chronic obstructive pulmonary disease (COPD) affecting 334 million people in the world remains 
a major cause of morbidity and mortality. Proper diagnosis of COPD is still a challenge and largely solely based 
on spirometric criteria. We aimed to investigate the potential of nitrosative/oxidative stress and related metabolic 
biomarkers in exhaled breath condensate (EBC) to discriminate COPD patients.

Methods Three hundred three participants were randomly selected from a 15,000‑transit worker cohort 
within the Respiratory disease Occupational Biomonitoring Collaborative Project (ROBoCoP). COPD was defined 
using the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria as post‑bronchodilator ratio of Forced 
Expiratory Volume in 1st second to Forced Vital Capacity < 0.7 in spirometry validated by an experienced pulmonolo‑
gist. Discriminative power of biomarker profiles in EBC was analyzed using linear discriminant analyses.

Results Amongst 300 participants with validated spirometry, 50.3% were female, 52.3 years old in average, 36.0% 
were current smokers, 12.7% ex‑smokers with mean tobacco exposure of 15.4 pack‑years. Twenty‑one partici‑
pants (7.0%) were diagnosed as COPD, including 19 new diagnoses, 12 of which with a mild COPD stage (GOLD 1). 
Amongst 8 biomarkers measured in EBC, combination of 2 biomarkers, Lactate and Malondialdehyde (MDA) sig‑
nificantly discriminated COPD subjects from non‑COPD, with a 71%‑accuracy, area under the receiver curve of 0.78 
(p‑value < 0.001), and a negative predictive value of 96%.

Conclusions These findings support the potential of biomarkers in EBC, in particular lactate and MDA, to discrimi‑
nate COPD patients even at a mild or moderate stage. These EBC biomarkers present a non‑invasive and drugless 
technique, which can improve COPD diagnosis in the future.
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Introduction
Chronic obstructive pulmonary disease (COPD) affects 
334 million people in the world, with a global preva-
lence of 11.7% [1]. In Europe, the prevalence of COPD 
varies between 13.5% and 13.9% and is twice as high in 
men as in women [1]. Worldwide, COPD is the third 
leading cause of death, responsible for approximately 
6% of total deaths [2], the second cause of disability-
adjusted life-years lost [3], and the most common cause 
of respiratory failure. In terms of cost, the annual bur-
den of COPD is estimated to be €38.7 billion in Europe 
with up to 73% of the costs related to inability to work 
and accounting for nearly $50 billion in US government 
spending in 2010 [1, 4].

Smoking is the main risk factor in the development of 
COPD. Besides, occupational exposures to dusts, vapors, 
gases, and fumes, exposure to indoor and outdoor air 
pollution, maternal smoking during pregnancy or early 
childhood, genetic and dietary factors were recently 
acknowledged as COPD risk factors [5–9]. In fact, in a 
recent report, the Global Initiative for Chronic Obstruc-
tive Lung Disease (GOLD) highlighted air pollution as a 
major health threat to patients living with COPD requir-
ing actions to reduce the morbidity and mortality related 
to poor air quality around the world [7]. Occupational 
exposure is responsible for 20% of COPD overall [10], 
and 31% of COPD in non-smokers [11]. One third of 
occupationally exposed COPD patients must stop work-
ing definitively due to their respiratory problems [12].

Studies have shown that the earlier COPD patients 
receive treatment, the greater the recovery of pulmo-
nary function, highlighting the importance of an early 
diagnosis [13]. However, 70% of COPD patients are diag-
nosed at advanced stages and 50% die approximately 
3.6 years after the first hospitalization [14]. The diagnosis 
of COPD is still challenging because some patients are 
asymptomatic or only have mild and non-specific res-
piratory symptoms. Besides clinical symptoms including 
chronic cough (~ 3 months a year) and sputum produc-
tion, spirometry is the most widely used method to diag-
nose COPD. Although spirometry is necessary to assess 
the prevalence and severity of COPD, when spirometry 
becomes abnormal and a decrease in FEV1 is evident, 
the disease has already been present for some years and 
has already progressed. Moreover, pre-bronchidilatation 
spirometry is often incorrectly used in routine medical 
examinations, rising concerns of diagnostic misclassifi-
cation [1, 15]. In its last report, GOLD proposes a defi-
nition of “early COPD” related to the initial biological 
mechanisms that eventually lead to COPD which should 
be differentiated from a clinical “early”, which reflects 
the initial perception of symptoms, functional limita-
tion and/or structural abnormalities noted [9]. Therefore, 

considering this screening limits of spirometry, having 
an easy to measure, early COPD diagnostic biomarkers 
at disposal could be more cost-effective from a health 
perspective. It could be particularly useful for screening 
populations at risk and targeting preventive interventions 
(i.e. smoking cessation, reduction of occupational expo-
sure to pollutants…).

The oxidative stress plays a central role in the patho-
physiology of COPD and could be measured using bio-
markers [16–18]. Oxidative stress induces epigenetic 
changes resulting from direct activation of oxidative 
stress response genes and inflammation resulting from 
indirect intracellular signaling pathways, through the 
overproduction of reactive oxygen species (ROS) and 
altered gene expressions. ROS release inflammatory 
mediators, impairing phagocytosis of apoptotic cells and 
weakening the ability of corticosteroids to repress pro-
inflammatory genes expression. Biomarkers of inflam-
mation, lipid peroxidation, protein oxidation and DNA 
damage can result from tissue damage, protein alteration, 
and remodeling of extracellular matrix and mucus. As 
a consequence of long-term inflammatory stimulation, 
COPD may also be accompanied by modified metabo-
lism [7, 19, 20]. This phenomenon is currently investi-
gated from biomarkers discovery perspective with some 
promising results indicating usefulness of oxidative stress 
biomarkers to monitor COPD progression and severity 
[21, 22].

For that purpose, exhaled breath condensate (EBC), a 
noninvasively collected biological matrix, allows measur-
ing different biomarkers representative of inflammatory 
processes in the lungs [23–26]. Sophisticated metabo-
lomic approaches applied to EBC may improve the diag-
nosis of COPD. Indeed, COPD patients present modified 
concentrations of acetate, propionate and lactate [27] or 
formate [28]. Statistical models using these anions among 
others could differentiate between healthy and COPD 
patients. Moreover, the distribution of some of these bio-
markers in EBC samples was shown to be modified in 
workers exposed to soapstone and quartz [29] and public 
transit workers [30].

In the present study, we aimed to investigate whether 
these biomarkers in EBC can discriminate COPD cases 
among a sample of underground subway workers.

Material and methods
Study design, setting and participants
The study sample was constructed by applying a strati-
fied random sampling procedure to a cohort of 15,000 
underground subway workers in the Parisian transport 
company, within the Respiratory disease Occupational 
Biomonitoring Collaborative Project (ROBoCoP).
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The strata were defined by sex, age, smoking sta-
tus (smokers, ex-smokers, non-smokers) and exposure 
(depending on the occupation: station agents, security 
guards and locomotive operators). Company occupa-
tional physician contacted one by one the randomly 
selected workers in each stratum and included those 
who accepted participation. During the inclusion call, 
the physician verified the inclusion criteria (i.e., being 
employed at the company for at least one year and older 
than 40 years). In case of refusal, retirement, or employ-
ment in another company, the physician called the next 
worker listed in the same strata, and so on, until recruit-
ing at least 300 participants, to insure a 90%-statistical 
power in the analysis as determined by the sample size 
calculation in the study protocol [31].

All data collection procedures and recent results of 
associations between long-term occupational exposure to 
subway PM10 and prevalence of respiratory diseases con-
ducted within ROBoCoP were published elsewhere [31–
33]. Briefly, we used three main sources of individual and 
health data: 1-the epidemiological questionnaire com-
pleted by study participants; 2-the biomedical tests and 
corresponding forms completed by the research team in 
the field; 3-individual occupational medical records. The 
latter were used for cross-checking information from epi-
demiological questionnaire.

Participants’ characteristics collected were age, gen-
der, height, weight, and ethnicity. Smoking status was 
defined as non-smoker, current smoker (at least one 
cigarette, e-cigarette, or shisha per day), and ex-smoker 
(no tobacco consumption for at least one year). Lifetime 
smoking exposure was calculated by multiplying the esti-
mation of cigarette packs smoked per day by the number 
of years smoking. Self-declared symptoms associated 
with COPD collected were cough, phlegm, shortness of 
breath and wheezing. Medical history associated with 
COPD collected were asthma, bronchitis, COPD, emphy-
sema, eczema, and pollen allergies.

COPD diagnosis
Spirometry was performed by the trained nurses using 
an electronic spirometer (Easy on-PC®, ndd Medi-
cal Technologies Inc., Andover, MA) according to the 
American Thoracic Society/European Respiratory Soci-
ety guidelines [34]. All spirometry-based results were 
validated by a board-certified pneumologist. All tests 
suggesting an obstructive syndrome were repeated 
after administrating a bronchodilator. The Global Ini-
tiative for Chronic Obstructive Lung Disease (GOLD) 
defines spirometrically confirmed COPD based on a 
FEV1 to a forced vital capacity (FVC) ratio smaller 
than 0.7 [9]. Participants having a FEV1/FVC ratio > 0.7 
were classified as non-COPD. Reference values of lung 

function parameters, FEV1, FVC, FEF 25–75, or FEV1/
FVC ratio were computed using the Global Lung Func-
tion Initiative (GLI 2012) [35]. GOLD further classi-
fies COPD severity as Pre-COPD: FEV1/FVC ≥ 0.7 and 
FEV1 ≥ 80% of predicted value and respiratory symp-
toms (cough, phlegm); Stage 1 (mild): FEV1/FVC < 0.7 
and FEV1 ≥ 80% of predicted value; Stage 2 (moderate): 
FEV1/FVC < 0.7 and FEV1 < 80% but ≥ 50% of predicted 
value; Stage 3 (severe): FEV1/FVC < 0.7 and FEV1 < 50% 
but ≥ 30% of predicted value; and Stage 4 (very severe): 
FEV1/FVC < 0.7 and FEV1 < 30% of predicted value 
[9]. Preserved ratio impaired spirometry (PRISm) was 
defined as FEV1 < 80% of predicted value and FEV1/
FVC ratio ≥ 0.70 [9].

EBC sampling, storage and analyses
EBC were collected at the RATP occupational medi-
cine center, during 20  min of tidal breathing using 
Turbo-Deccs® (Medivac, Parma, Italy) and nose clips, 
according to the latest recommendations [25]. An aver-
age volume of 2.26 ± 0.84 ml EBC per participant could 
thus be collected. Participants were asked to rinse their 
mouth with water before the collection and swallow the 
saliva during sampling. All EBC samples collected in 
polypropylene tubes with caps were sealed immediately 
after collection and stored at -20  °C during collection 
and transportation and at -80  °C until the analysis as 
described in Hemmendinger M et al. for MDA [36] and 
Sauvain JJ et al. for anions [29].

In this paper, we selected ion chromatography as a 
simple and quantitative method allowing determination 
of different metabolites (anions) in EBC. Nevertheless, 
NMR-based metabolomic and e-nose techniques are 
promising approaches for clinical diagnostic of chronic 
airways diseases but not available for us at the moment 
[37–39].

Briefly, the seven selected anions were analysed by 
injecting 10  μl of the EBC sample without any treat-
ment into a Dionex ICS 5000 + ion chromatograph, 
equipped with an analytical column IonPac AS11-
HC250 mm, 4  μm (ThermoFisher Scientific, Ecublens, 
Switzerland) and a conductivity detector. The validated 
method gives good recoveries (comprised between 
87–102%) with acceptable coefficients of variation 
comprised between 7–12%, except for  NO3

− which 
reach 20% [29]. The low LOD, comprised between 0.07 
and 0.58  μM (depending on the analyte), allowed the 
quantification of all these anions in all samples. Such 
detection limits are quite similar to NMR-based tech-
niques (0.13 ± 0.03 µM based on the reference standard 
3-trimethylsylil-[2,2,3,3-2H4]propionate and using the 
bins at 7.0–7.3 ppm) [40].
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Data management and statistical analysis
Data management and statistical analyses were per-
formed using Stata, version 16 (College Station, Tx). Indi-
vidual data from questionnaires were computerized and 
double-checked for correctness and completeness. The 
categorical variables was expressed as frequency. Con-
tinuous variables were expressed as median, interquartile 
ranges (IQR). Variables with missing values were sent to 
the participant’s occupational physician for completion. 
Interval regression models were used to impute censured 
data (below limit of detection (LOD) and comprised 
between LOD and limit of quantification (LOQ)) [41].

The central research hypothesis in ROBoCoP was that 
a combination of several biomarkers measured in EBC 
would be more efficient than a single biomarker for 
COPD diagnosis. Therefore, biomarkers with a p-value 
below 0.20 in univariate analysis were selected to be 
included in the multivariate analysis. To evaluate the 
discriminant power of different biomarkers on COPD 
diagnosis we used a linear discriminant analysis [42]. 
The standardized discriminant function coefficient of the 
variable indicate its discriminating ability. Relative con-
tribution of the variable to separation of the two groups 
can be assessed by comparing the coefficients in the dis-
criminant function. The canonical structure coefficients 
measure the correlation between the discriminating vari-
ables and the discriminant function [42]. We evaluated 
the classification performance in regards of error rates 
(leave one out table). We used receiver operating charac-
teristic (ROC) curves and calculated area under the curve 
(AUC) to illustrate the discriminant power of different 
biomarkers on COPD diagnosis. The method of cutpoint 
estimation by biomarker used in the ROC curve was the 
Liu method maximizing the product of the sensitivity 
and specificity [43]. In models using multiple biomark-
ers, if the sum of canonical structure coefficients (β) bio-
markers multiplied by their concentration was below 1, 
the participant was considered as no COPD, and over 1 
as COPD as below.

Results
Description of study sample
The study sample included 303 participants. Three par-
ticipants were excluded for lack of spirometry results. 
Participants were 52-year-old in average and mostly 
Caucasian. The average body mass index (BMI) of par-
ticipants was 25.9 kg/m2. Thirty-six percent were current 
smokers, 12.7% ex-smokers with overall mean tobacco 
exposure of 15.4 pack-years (Table 1).

Y = (βbiomarkerx × [Biomarkerx])

Twenty-one participants (7.0%) had spirometrically 
confirmed COPD, including 19 participants unaware 
of their COPD status, 12 of which with a mild COPD 
(GOLD 1), 8 with a moderate COPD (GOLD 2) and 1 
with a severe COPD (GOLD 3). Values of last meas-
ure of participant’s spirometry, pre-bronchodilator, 
or post-bronchodilator in case FEV1/FVC ratio < 0.70 
are presented Table  1. Thirty-four percent of the par-
ticipants reported to have at least one symptom linked 
with COPD, i.e. cough, phlegm, shortness of breath and 
wheezing (Table 1).

COPD patients were more likely to be smokers com-
pared to no COPD participants (current smokers 61.9% 
vs 34.1%) (Table  1). In spirometry, FEV1% predicted, 
FVC % predicted and FEF 25–75% were worse in COPD 
patients compared to no COPD participants. Likewise, 
patients with COPD declared more COPD-related symp-
toms compared to no COPD participants: cough (52.4% 
vs 15.8%, p-value < 0.001), wheezing (23.8% vs 7.9%, 
p-value < 0.01) with mean number of COPD-related 
symptoms of 1.2 versus 0.5 in no-COPD participants 
(p-value 0.03) (Table 1).

Biomarkers measured in EBC
Eight biomarkers in EBC were analyzed for each partici-
pant: Lactate, Formate, Acetate, Butyrate, MDA, Nitrate, 
Nitrite and Propionate, with results available for all of 
them in 293 participants.

Malondialdehyde (MDA)
MDA concentration was higher in COPD patient com-
pared to non-COPD with median concentration of 
288.8  pg/ml [IQR 203.2–432.5] and 255.5  pg/ml [IQR 
146.7–407.6], respectively (p-value 0.12) (Table  2). In 
91.2% of samples, MDA concentration was above the 
LOQ (75.0 pg/ml) and 6.3% had concentration comprised 
between LOQ and LOD (25.0 pg/ml).

Anion patterns
Lactate concentration was lower in COPD patient com-
pared to non-COPD with median concentration of 
0.4  µmol/L [IQR 0.2–2.1] and 2.4  µmol/L [IQR 0.8–
4.6], respectively (p-value < 0.001) (Table  2). In 84.7% 
of samples, Lactate concentration was above the LOQ 
(0.3  µmol/L) and 10.3% had concentration comprised 
between LOQ and LOD (0.1 µmol/L).

The concentrations of other anions were not statisti-
cally different between workers with and without COPD 
(Supplementary Material Table 1).

Discriminant analysis of biomarkers
Amongst eight biomarkers measured in EBC, Lactate 
and MDA together discriminated COPD subjects fromw 
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Table 1 Sample description
Variable No COPD n = 279 COPD n = 21 Total n = 300 p-value

Gender, women, n (%) 141 (50.5) 10 (47.6) 151 (50.3) 0.07

Mean age, years, m (SD) 52.2 (5.3) 53.5 (5.4) 52.3 (5.3) 0.22

Age category, n (%)

 40–45 38 (13.6) 2 (9.5) 40 (13.3)

 45–50 43 (15.4) 2 (9.5) 45 (15.0)

 50–55 91 (32.6) 7 (33.3) 98 (32.7)

 55–60 98 (35.1) 8 (38.1) 106 (35.3)

 60 + 9 (3.2) 2 (9.5) 11 (3.7) 0.55

BMI (kg/m2), m (SD) 26.0 (4.3) 25.3 (4.4) 25.9 (4.3) 0.67

Ethnicity, n (%)

 Caucasian 225 (80.6) 17 (81.0) 242 (80.7)

 African 44 (15.8) 4 (19.0) 48 (16.0)

 Other 4 (1.4) 0 (0.0) 4 (1.3) 0.84

Smoking category, n (%)

 Non smoker 147 (52.7) 7 (33.3) 154 (51.3)

 Current smoker 95 (34.1) 13 (61.9) 108 (36.0)

 Ex‑smoker 37 (13.3) 1 (4.8) 38 (12.7) 0.04

Tobacco exposure, pack‑years, m (SD) 14.8 (14.6) 21.5 (17.2) 15.4 (14.9) 0.11

Occupation, n (%) 0.91

 Station agent 123 (44.1) 9 (42.9) 132 (44.0)

 Locomotive operator 113 (40.5) 8 (38.1) 121 (40.3)

 Security guard 43 (15.4) 4 (19.0) 47 (15.7)

Employement duration, years, m (SD) 24.0 (6.1) 24.9 (7.5) 24.1 (6.2) 0.54

Spirometry, m (SD)

 FEV1% predicted (GLI) 99.3 (13.1) 83.6 (17.0) 98.2 (14.0)  < 0.001

 FVC % predicted (GLI) 101.1 (12.9) 103.6 (17.8) 101.2 (13.2) 0.26

 FEV1/FVC % predicted (GLI) 98.0 (5.4) 80.0 (6.8) 96.7 (7.2)  < 0.001

 FEF 25–75% predicted (GLI) 97.7 (28.2) 48.1 (18.7) 94.2 (30.4)  < 0.001

COPD Stage, n (%)

 PRISm 18 (6.5) ‑ ‑

 Pre‑COPD: At‑risk 63 (22.6) ‑ ‑

 GOLD 1: Mild ‑ 12 (57.1) ‑

 GOLD 2: Moderate ‑ 8 (38.1) ‑

 GOLD 3: Severe ‑ 1 (4.8) ‑

 GOLD 4: Very severe ‑ 0 (0.0) ‑

Self declared symptoms, n (%)

 Cough 44 (15.8) 11 (52.4) 55 (18.3)  < 0.001

 Phlegm 41 (14.7) 6 (28.6) 47 (15.7) 0.11

 Shortness of breath (Dyspnea) 40 (14.3) 4 (19.0) 44 (14.7) 0.53

 Wheezing 22 (7.9) 5 (23.8) 27 (9.0)  < 0.01

  At least one above symptom 90 (32.2) 12 (57.1) 102 (34.0) 0.01

 Mean number symptoms above, m (SD) 0.5 (0.9) 1.2 (1.4) 0.6 (1.0) 0.03

 At least one COPD symptom exacerbation ‑ 7 (33.3) ‑

Medical history, n (%)

 Asthma 27 (9.7) 3 (14.3) 30 (10.0) 0.42

 Bronchitis 7 (2.5) 1 (4.8) 8 (2.7) 0.45

 COPD 0 (0.0) 2 (9.5) 2 (0.7) 0.44

 Emphyzema 3 (1.1) 2 (9.5) 5 (1.7)  < 0.01

 Eczema 56 (20.1) 3 (14.3) 59 (19.7) 0.04

 Pollen Allergies 60 (21.5) 6 (28.6) 66 (22.0) 0.78

Abbreviations: BMI body mass index, COPD Chronic obstructive pulmonary disease, FEF 25–75% Forced expiratory flow during the middle half of the FVC, FEV1 forced expiratory 
volume in one second, FVC forced vital capacity, GOLD Global initiative for obstructive lung disease, PRISm preserved ratio abnormal spirometry, SD standard deviation
Values shown are mean (SD) or number (%) of subjects where appropriate
For definitions of GOLD stage and PRISm refer to the methods section
Associations with a p-value of < 0.05 are bolded



Page 6 of 10Freund et al. Journal of Occupational Medicine and Toxicology           (2024) 19:10 

non-COPD (p < 0.001). The model with this biomarker 
combination had a 71%-accuracy, a 62%-sensitivity, a 
71%-specificity, a 14%-positive predictive value and 
96%-negative predictive value (Table  3). Using receiver 
operating characteristic (ROC) curve of the 2-biomarker 
model, the area under the curve (AUC) was 0.78 (Fig. 1).

The description (canonic structure) of this model is 
presented in Supplementary Material Table 2. The stand-
ardized discriminant function coefficients indicated that 
both MDA (0.610) and Lactate (-0.923) had a strong dis-
criminating ability regarding COPD. Moreover, Lactate 
decrease had a higher contribution than MDA increase 
in our discriminant model. The canonical structure coef-
ficients of Lactate and MDA indicated that both variables 
were correlated with our discriminant model (β = –0.802 
and 0.427, respectively).

Individually, MDA discriminated COPD subjects from 
non-COPD (p = 0.03) with a 54%-accuracy (Table  3), 
an  AUC of 0.61 (Supplementary Material Fig.  1) and 
an optimal cutoff value concentration of 239.5  pg/mL. 
Likewise, individually Lactate discriminated COPD 
subjects from non-COPD (p-value < 0.001) with a 
72%-accuracy (Table 3), an AUC of 0.73 (Supplementary 
Material Fig. 1) and an optimal cutoff value concentration 

of 1.71 µmol/L. The complete set of biomarkers did not 
improve the discriminant power of the model compared 
to the model with two biomarkers (Supplementary Mate-
rial Table  3). The description (canonic structure) of the 
model with 8 biomarkers is presented in Supplementary 
Material Table 4.

Lactate concentration and MDA concentration in 
EBC could not statistically discriminate pre-COPD and 
PRISm patients. Moreover, lactate and MDA concentra-
tions in EBC were not correlated with FEF 25–75, the 
corresponding correlation coefficients were 0.0593 and 
-0.0806, respectively.

Discussion
These findings support the ability of biomarkers meas-
ured in EBC to discriminate COPD patients even at a 
mild or moderate stage. These biomarkers represent a 
non-invasive and drugless technique, which can improve 
COPD diagnosis in the future.

Amongst eight biomarkers measured in EBC, combi-
nation of Lactate and MDA significantly discriminated 
COPD subjects from non-COPD. In a previous study, 
we showed no correlation between Lactate and MDA 
in EBC [30]. MDA is one of the end-products of lipid 

Table 2 Biomarker concentrations measured in EBC

Abbreviations: COPD Chronic obstructive pulmonary disease, IQR Interquartile range, MDA Malondialdehyde

Associations with a p-value of < 0.05 are bolded

Biomarker
Median [IQR], missing data

No COPD n = 279 COPD n = 21 Total n = 300 p-value

Lactate (µmol/L) 2.4 [0.8–4.6], 6 0.4 [0.2–2.1], 0 2.2 [0.6–4.5], 6  < 0.001
MDA (pg/mL) 255.5 [146.7–407.6], 3 288.8 [203.2–432.5], 0 261.2 [150.4–410.6], 3 0.12

Table 3 Model description and performance

Abbreviations: AUC  Area Under the Curve, MDA Malondialdehyde

Linear discriminant analysis

MDA n = 293 Lactate n = 293 Lactate-
MDA 
n = 293

Linear discriminant analysis p‑value 0.03  < 0.001 p < 0.001

Performance

 AUC 0.61 0.73 0.78

 Sensitivity (%) 57 57 62

 Specificity (%) 54 73 71

 Positive Predictive value (%) 9 14 14

 Negative Predictive value (%) 94 96 96

 Youden Index 0.11 0.30 0.33

 Prevalence (%) 7 7 7

 Error rate (%) 46 28 29

 Success rate (%) 54 72 71
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peroxidation and a well-established marker of oxidative 
stress [44]. These results are consistent with the litera-
ture. Indeed, COPD patients have higher MDA levels in 
EBC than healthy participants [45]. Likewise, in blood 
an increase of MDA was also reported in COPD patients 
compared to healthy participants and as COPD sever-
ity increases [46]. Last, an increased MDA was associ-
ated with aging and smoking [44]. In our study, COPD 
patients were comparable to non-COPD participants in 
term of age but not in term of smoking. When adjusted 
on smoking, our model kept its performance, highlight-
ing its robustness and interest for COPD diagnosis.

Lactate levels in our study are comparable with the lev-
els reported in healthy patients [29], whereas in COPD 
patient lactate level was significantly decreased, allowing 
their discrimination. COPD is a heterogeneous disease 
with a range of underlying mechanisms. One main fea-
ture is the thickening of airway smooth muscles coupled 
with an excessive production of sputum. These changes 
are induced by mitochondrial dysfunction with increased 
glycolysis [47]. Lactate results inevitably from the gly-
colysis and its major route of catabolism is oxidation in 
the mitochondria or gluconeogenesis [48]. In contrary 
to Michaeloudes [47], the observed decrease of Lactate 
in our population of COPD diagnosed patients could 
result from an increased use of Lactate to sustain the 
glycolysis process in COPD compared to the non-COPD 
population [48]. Gregus et al. also reported a decreased 
Lactate level in EBC of patients with different inflamma-
tory pathologies (including COPD) compared to healthy 
volunteers [49]. It could also be a sign of an adaptation 
to the higher muscle work induced by the development 

of the disease. Indeed, it was reported that for trained/
adapted persons, 90% of Lactate is used as energy source, 
whereas only 70% is used in non-trained persons [50]. 
Finally, Xue et  al. demonstrated significant increase of 
Lactate associated with the aggravation of COPD severity 
and with COPD symptomatology [51]. However, in our 
study, we analyzed only newly diagnosed patients, mainly 
mild and moderate stages and paucisymptomatic.

Among the strengths, it is worth mentioning that all 
spirometry tests were conducted by trained nurses, vali-
dated by a board-certified pulmonologist and all tests 
suggesting an obstructive syndrome were repeated after 
administrating a bronchodilator, as recommended by 
GOLD [9]. In addition, we used validated methods for the 
analysis of these different metabolites [29, 36]. We used 
an interval regression models to account for censured 
data below limit of detection (LOD) and between LOD 
and limit of quantification (LOQ) as recommended [41]. 
Moreover, EBC sampling and spirometry were performed 
at the same time-point at the individual participant level, 
avoiding change of COPD or biomarker status in the 
interval. Mild and moderate stages COPD are difficult to 
diagnose, potentially underestimating the performance 
of our model in a COPD population with severe patients. 
Indeed, a majority of the twenty-one participants were 
newly diagnosed COPD, mostly mild COPD stage (GOLD 
1) and paucisymptomatic. Half of them were women, 
known to be highly misdiagnosed with respect to COPD. 
Thus, in a COPD population with severe stages (GOLD 
3–4), oxidative biomarker such as MDA, would increase 
with COPD severity [46, 52] and therefore could improve 
the discriminative power of our model. Interestingly, 

Fig. 1 Receiver operating characteristic curve of the two‑biomarker model. Notes: Linear discriminant analysis; Abbreviations: AUC Area Under 
the Curve, MDA Malondialdehyde
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the predictive negative value of our model using Lactate 
and MDA was high (96%), highlighting its potential to 
be used as a screening tool. Besides, 36.0% of the study 
population were current smokers, 12.7% ex-smokers with 
a mean tobacco exposure of 15.4 pack-years. This shows 
the importance of early diagnosis and smoking cessation 
intervention to stop disease progression in this popula-
tion. Finally, the presence of metabolites in EBC results 
from the combined action of multiples enzymes, reflect-
ing the consequences of exposure to pollutants and the 
development of pathologies. The observed modifications 
in oxidative stress biomarkers concentrations combined 
with changes in glycolysis metabolites illustrate the inter-
est to consider multiple biomarker approach and corre-
sponds to a strength of this study.

The study has also limitations. First, assessing the per-
formance of biomarkers in EBC comparing to a subopti-
mal reference, gives a controversial view of spirometry as 
a gold standard for COPD screening and diagnosis. False 
positive and false negative participants with EBC tech-
nique, compared to this reference test, could therefore be 
early COPD patients and true non-COPD participants. 
Follow-up of false positive participants, potentially early-
COPD related to the initial biological mechanisms that 
eventually lead to COPD, may find rapidly new COPD 
diagnosis, highlighting the earliness discrimination 
power of our oxidative biomarkers in the course of the 
disease. However, the use of EBC in the course of COPD 
diagnosis has still to be determined. In fact, spirometry 
and EBC are both non-invasive methods and bronchodi-
lation responsiveness testing is considered safe [53]. EBC 
needs a well-equipped laboratory, and the clinician will 
have results well after the collection, whereas spirometry 
results are immediate. Additionally, while spirometry is a 
standardized method, EBC collection and analysis have 
still many issues to be answered, as reported in the lat-
est ATS/ERS technical standard [25]. Second, the lower 
COPD prevalence of 7% in our occupational study pop-
ulation compared to the COPD prevalence of 13.7% in 
the general population was expected [1]. The healthy 
worker effect, especially its healthy worker survivor effect 
(HWSE) component, might partially explain this find-
ing. The HWSE results from a continuing selection pro-
cess where workers who remain employed tend to be 
healthier than those who leave employment [54]. Despite 
the lower power of our study, we were able to find sta-
tistically significant results. Last, our study is a diag-
nostic accuracy cohort-type cross-sectional study [55], 
establishing or excluding COPD diagnosis. Even if it is a 
first critical step, medical decision-makers generally rely 
on the impact of early diagnosis on patient health out-
comes, such as mortality, morbidity, and quality of life. 

Therefore, future longitudinal studies could more exten-
sively address the impact of the use of these biomarkers 
in EBC on COPD patient health outcomes.

Conclusion
This study supports the potential of biomarkers in EBC, 
in particular lactate and MDA, to discriminate COPD 
patients even at a mild or moderate stage. Studies have 
shown that the earlier COPD patients receive treatment, 
the greater the recovery of pulmonary function, high-
lighting the importance of an early diagnosis [13]. How-
ever, screening and proper diagnosis of COPD is still a 
challenge. We found that a combination of two biomark-
ers measured in EBC, Lactate a central metabolite in gly-
colysis, and MDA a well-established marker of oxidative 
stress, significantly discriminated COPD subjects from 
non-COPD. These biomarkers non-invasively measured 
in EBC, can improve COPD diagnosis in the future.
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