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Abstract 

Background  The global market for lithium-ion batteries (LIBs) is growing exponentially, resulting in an increase 
in mining activities for the metals needed for manufacturing LIBs. Cobalt, lithium, manganese, and nickel are four 
of the metals most used in the construction of LIBs, and each has known toxicological risks associated with exposure. 
Mining for these metals poses potential human health risks via occupational and environmental exposures; however, 
there is a paucity of data surrounding the risks of increasing mining activity. The objective of this review was to char-
acterize these risks.

Methods  We conducted a review of the literature via a systematic search of the PubMed database on the health 
effects of mining for cobalt, lithium, manganese, and nickel. We included articles that (1) reported original research, (2) 
reported outcomes directly related to human health, (3) assessed exposure to mining for cobalt, lithium, manganese, 
or nickel, and (4) had an available English translation. We excluded all other articles. Our search identified 183 relevant 
articles.

Results  Toxicological hazards were reported in 110 studies. Exposure to cobalt and nickel mining were most associ-
ated with respiratory toxicity, while exposure to manganese mining was most associated with neurologic toxicity. 
Notably, no articles were identified that assessed lithium toxicity associated with mining exposure. Traumatic hazards 
were reported in six studies. Three articles reported infectious disease hazards, while six studies reported effects 
on mental health. Several studies reported increased health risks in children compared to adults.

Conclusions  The results of this review suggest that occupational and environmental exposure to mining metals 
used in LIBs presents significant risks to human health that result in both acute and chronic toxicities. Further research 
is needed to better characterize these risks, particularly regarding lithium mining.
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Introduction
In recent years, the global market for lithium-ion bat-
teries (LIBs) has grown exponentially in response to 
increasing economic and political interests in energy 
alternatives to fossil fuels [1]. LIBs are rechargeable bat-
teries that are used in a multitude of products including 
electric motor vehicles, smartphones, laptops, power 
tools, and energy storage systems. Rapid economic 
growth is projected to continue, with the global LIB 
market currently valued around $54 billion and antici-
pated to increase by 20–30% annually until 2030 [2, 3]. 
Consequently, there has been a dramatic increase in 
efforts to mine the metals used to manufacture LIBs [4].

In addition to the titular lithium, LIBs contain tran-
sition metals that are typically used to construct the 
cathode of the battery system [5]. The anode is gener-
ally constructed of graphite. Cobalt, manganese, nickel, 
and lithium are four of the most heavily mined metals 
for LIB production [5]. Large quantities of these met-
als are often required for manufacturing. A single car 
battery, for example, can contain up to 20 kg of cobalt 
[6]. Significant expansion of mining activities for these 
metals is occurring on a global scale and poses poten-
tial health risks to mine workers and neighboring com-
munities via occupational and environmental exposures 
[7]. Despite this, there is a paucity of data surrounding 
the risks of such increased mining activity.

Each of the metals in this study has well-documented 
toxicity. The respiratory effects of cobalt have been 
described for centuries, since German miners discov-
ered that toxic gases were released during the smelt-
ing process [8]. The miners believed the metal was 
bewitched by devilish spirits and nicknamed the metal 
“kobold” or “goblin of the mines”. Cobalt inhalation 
can cause direct respiratory toxicity, including hard 
metal lung disease, while systemic cobalt toxicity can 
cause cardiomyopathy, thyroid dysfunction, neuro-
logic dysfunction, and aseptic lymphocyte-dominated 
vasculitis-associated lesions [9]. The neurotoxicity of 
manganese has been extensively documented and was 
described as early as the nineteenth century. Occupa-
tional and environmental exposures have been asso-
ciated with numerous neurologic and psychiatric 
manifestations including Parkinsonism, motor deficits, 
cognitive impairment, and psychosis [10]. Nickel is a 
known genotoxin and carcinogen [11]. Occupational 
exposure primarily occurs through inhalation; however, 
toxicity can also develop via ingestion or skin absorp-
tion [12]. Lithium is nephrotoxic and thyrotoxic, can 
cause neuropsychiatric symptoms, and is a teratogen 
[13, 14].

In this study, we conducted a narrative review of the 
occupational, environmental, and toxicological hazards 

associated with mining exposure to cobalt, lithium, man-
ganese, and nickel to better characterize the risks associ-
ated with growing demand for LIBs.

Methods
We systematically searched the PubMed database using 
the pre-defined search term “((cobalt) OR (lithium) OR 
(manganese) OR (nickel)) AND ((health) OR (disease) 
OR (injury)) AND ((mine) OR (mining))” on January 24, 
2024. We analyzed the results of the search in accord-
ance with the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) guidelines 
[15]. We did not apply any other restrictions to the ini-
tial search. We imported all studies resulting from this 
search into Covidence systematic review software (Veri-
tas Health Innovation, Melbourne, Australia) for review. 
A minimum of two authors independently screened titles 
and abstracts for inclusion, with discrepancies resolved 
by a third author. We then reviewed full texts for all arti-
cles included in the screening.

We included studies if they (1) reported original 
research, (2) reported outcomes directly related to 
human health, (3) assessed exposure to mining for cobalt, 
lithium, manganese, or nickel, and (4) had an English 
translation that could be obtained electronically either 
via internet search or inter-library loan. We excluded 
studies that did not meet all inclusion criteria. Follow-
ing review, we extracted the following variables from the 
articles meeting inclusion criteria, as applicable: date of 
publication, country or countries in which the study was 
conducted, study design, which of the four previously 
chosen metals (cobalt, lithium, manganese, or nickel) 
were included, report of human health or toxicological 
hazards, report of traumatic hazards, report of non-trau-
matic occupational hazards, and calculated health risk 
based on environmental data.

Results
The initial search term yielded 649 unique articles, of 
which 183 met inclusion criteria (Fig. 1). The final set of 
included articles contained 22 cohort studies, 3 case–
control studies, 91 cross-sectional studies, and 4 case 
reports or series, in addition to 2 in  vitro studies and 
61 articles that calculated human health risk based on 
environmental sampling without including human par-
ticipants. Included articles were published between 1955 
and 2023 and came from 47 countries (Fig. 2). The coun-
tries that appeared most frequently were China (30 arti-
cles), the Democratic Republic of the Congo (12), Mexico 
(11), and South Africa (11). Manganese appeared in the 
most articles, while lithium appeared in the least. Many 
articles discussed more than one of the study metals.
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Toxicological hazards: cobalt mining
Toxicity associated with exposure to cobalt mining 
was assessed in 28 articles [16–43]. Respiratory disease 
was the most common category of toxicological hazard 
reported in papers discussing cobalt exposure. Respira-
tory health problems described in populations exposed 
to cobalt mining included upper and lower respiratory 
infections, lung cancer, hard metal lung disease, pneu-
moconiosis, chronic bronchitis, and chronic mountain 
or altitude sickness [24, 25, 29, 39, 40, 42]. A case report 
discussed a patient in whom hard metal lung disease re-
occurred even after a lung transplant [42]. Three studies 
conducted in areas of the Democratic Republic of the 
Congo known for cobalt mining described birth defects 
in children whose parents held mining-related jobs [26, 
27, 43]. Several studies reported increased in vivo levels 

of heavy metals in populations exposed to mining com-
pared to reference values or control groups [17, 18, 20, 
22, 32, 36, 37]. Levels as much as 40 times greater than 
reference values were reported [17]. One such study 
also found that exposed children had higher urine lev-
els of DNA oxidative damage markers, a difference that 
was not observed in adult participants [18]. In pregnant 
women exposed to cobalt mining, elevated maternal 
blood levels were associated with fetal levels, suggesting 
cross-placental transfer [28]. Cobalt mining work was 
also reported to be associated with male sexual dysfunc-
tion and decreased testosterone [33, 34].

Toxicological hazards: manganese mining
Toxicity associated with exposure to manganese mining 
was assessed in 73 papers, more than any other metal 

Fig. 1  PRISMA analysis of articles



Page 4 of 12Brown et al. Journal of Occupational Medicine and Toxicology           (2024) 19:35 

in this study [16–21, 23, 31, 32, 35, 37, 38, 41, 43–102]. 
Neurologic toxicity was the most cited category of dis-
ease, with studies reporting cognitive impairment, mus-
cle weakness, gait instability, tremors, impaired motor 
control, hearing loss, memory problems, and Parkin-
sonism [46, 58, 61, 66, 68, 71, 89–92]. Psychiatric symp-
toms were described in multiple studies including higher 
scores on psychiatric distress assessments, emotional 
instability, disorganization, manic symptoms, and hal-
lucinations [44, 89, 92]. Increased iron deficiency among 
manganese miners was reported in one study and rates of 
iron deficiency improved after reconstitution of drinking 
water [48]. Manganese mining exposure was also asso-
ciated with prostate cancer, prolactin levels, and sexual 
dysfunction [81, 89, 92, 96, 99]. Respiratory disease was 
less commonly reported in papers discussing manganese 
mining than for cobalt or nickel, although studies did 
report associations between exposure to mining activi-
ties involving manganese and worse respiratory func-
tion metrics, pneumoconiosis, respiratory infections, and 
development of restrictive lung disease [47, 70, 89, 94]. 
Cytotoxic and immunotoxic effects in mining-exposed 
populations were described in multiple studies, including 
T-cell receptor mutations, and lower levels of CD3 + and 
CD4 + lymphocytes [55, 56]. In one in vitro study, expo-
sure to manganese oxides obtained from mine dust was 
associated with DNA damage [45]. Multiple studies 
assessed risks in children. Studies reported that the con-
centration of manganese in the hair of children living 

near mines was elevated compared to controls and asso-
ciated with worse performance on visuospatial and ver-
bal learning and memory testing [63, 66]. Manganese in 
umbilical cord blood was reported to be associated with 
birth defects in a case–control study while cognitive and 
motor function in children was negatively associated 
with maternal levels of manganese [43, 54]. A study com-
paring children living in a manganese mining area to a 
control group found decreased performance on IQ test-
ing [88]. Children exposed to manganese mining were 
also reported to have higher incidence of skeletal deform-
ities [62]. Increased in  vivo levels of manganese associ-
ated with mining exposure were also described in several 
studies [16, 20, 35, 38, 47, 48, 65, 66, 69, 84, 88, 93].

Toxicological hazards: nickel mining
Toxicity associated with exposure to nickel mining was 
assessed in 56 papers [17, 20, 21, 23, 31, 32, 35, 37–39, 
41, 45, 55, 56, 60, 67, 77, 83, 87, 97, 102–137]. Like cobalt, 
respiratory toxicity was the most common type of pathol-
ogy reported. Respiratory manifestations associated with 
nickel mining included lung cancer, chronic bronchitis, 
respiratory infections, and nasal obstruction/rhinitis [39, 
109–111, 118, 119, 123, 128, 133]. Increased mortality 
due to other types of cancer and cardiovascular disease 
was also reported in populations exposed to nickel min-
ing and refining.120,125 One study found that 75% of par-
ticipants living in a nickel mining region who used dug 
wells as a water source had elevated urinary creatinine 

Fig. 2  Country locations of included studies
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[131]. Mine workers exposed to nickel were found to 
have higher urinary nickel and cystatin C levels than 
steel plant workers [135]. A large cross-sectional study 
found increased diabetes in nickel miners compared to 
office workers [136]. Constitutional growth delay was 
reported at several times greater prevalence in a popu-
lation exposed to manganese and nickel pollution rela-
tive to a control population [102]. Studies also reported 
elevated markers of DNA damage, inflammatory mark-
ers, and auto-antibodies among populations exposed 
to nickel mining [105, 108, 112, 122]. DNA damage was 
also shown to be induced by in  vitro exposure to mine 
evaporite [124]. Populations exposed to mining were 
found to have elevated nickel levels in blood, urine, hair, 
and breast milk compared to reference values or control 
groups [20–22, 31, 32, 37, 41, 60, 77, 97]. Elevated physi-
ologic levels were observed multiple decades after the 
cessation of mining activity, indicating the longevity of 
environmental contamination [107].

Toxicological hazards: lithium mining
No studies identified in this review described toxico-
logical effects associated with lithium exposure due to 
mining.

Infectious disease hazards
Infectious disease hazards were described in three arti-
cles. Two studies reported outcomes from a Histoplas-
mosis outbreak among manganese mine workers in 
Guyana in 2019 [98, 100]. The third study was a survey 
conducted in a South African mining community, in 
which miners expressed concerns regarding high rates of 
communicable diseases, including tuberculosis and HIV. 
The miners cited residential overcrowding, inadequate 
toilet facilities, and prostitution as contributing factors 
[86].

Traumatic/physical hazards
Six articles were found that reported traumatic injuries 
or fatalities associated with mine work. Studies reported 
a variety of traumatic hazards, including falls, cave-ins, 
explosions, and mine fires [95, 117, 138] These hazards 
were reported to be associated with the quality of work-
ing conditions and factors such as poor visibility, extreme 
noise, and inadequate ventilation. Injuries related to 
machinery were cited in multiple studies and attributed 
to both inadequate training and malfunctioning or out-
dated equipment. Interviews with manganese miners 
reported insufficient personal protective equipment as 
a hazard and described a culture in which reluctance to 
work in unsafe conditions is penalized by supervisors, 
potentially resulting in job loss [86]. Two large retrospec-
tive studies of mortality among Canadian nickel workers 

found significantly increased mortality due to injury 
or violence compared to expected values [104, 127]. 
Although these studies did not differentiate between 
fatal injuries that occurred in occupational versus non-
occupational settings, injury mortality was particularly 
increased among underground miners.

Psychiatric/mental health hazards
Psychiatric illness and effects on mental health were 
reported in six papers. Chronic stress was described in 
multiple papers and occupational stress was associated 
with worse perceived quality of life [86, 121]. Higher 
scores on a standardized survey of psychological dis-
tress were recorded among participants residing in areas 
with increased levels of metal contamination [44]. An 
early study of mine workers with manganese poison-
ing described multiple psychiatric symptoms including 
mood instability and psychosis [92]. A survey of over 
1000 nickel miners in China reported symptoms of burn-
out in more than 80% of participants [130]. Increased 
mortality due to suicide was also reported among miners 
[104].

Environmental sampling
A total of 61 studies measured levels of metals in envi-
ronmental samples from areas contaminated by mining 
activity and calculated health risk via pre-determined 
acceptable values [139–199]. These studies did not 
directly involve human participants. A variety of sub-
strates were sampled including soil, water, air, plants, 
and animal tissue. Non-carcinogenic health risks were 
reported in many studies and determined from the Total 
Hazard Quotient or Hazard Index. A smaller subset of 
studies also reported carcinogenic risks, which were cal-
culated based on standardized cancer slope factors and 
compared to acceptable levels determined by the Inter-
national Agency for Research on Cancer. Of the stud-
ies, 43 reported a Hazard Index > 1 or lifetime cancer 
risk > 1 × 10–4 for one or multiple metals in at least one 
assay, indicating unacceptable levels of risk. In 14 of these 
studies, reported risks were increased for children com-
pared to adults.

Discussion
The results of this literature review demonstrate the 
breadth of adverse outcomes on health and wellbeing 
associated with occupational and environmental expo-
sure via mining to the four metals historically most used 
in the construction of LIBs. Our results are largely con-
sistent with known pathologic mechanisms; cobalt and 
nickel mining were more commonly discussed in articles 
describing respiratory disease, while all studies report-
ing neurologic pathology involved manganese exposure. 
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Given the exponential growth of mining for these metals 
in recent years, it is likely that effects on human health 
will increase without mitigation efforts.

The lack of studies examining the health effects of lith-
ium mining is noteworthy given the recent exponential 
increase in the global market for this metal, which has 
been termed “white gold”. Pathologic manifestations of 
both acute and chronic lithium toxicity have long been 
recognized medically given its common use as a treat-
ment for psychiatric illness and its narrow therapeutic 
index. Less is known about the effects of environmen-
tal lithium, although studies have reported associations 
between naturally occurring lithium concentrations in 
ground water and psychiatric illness, thyroid dysfunction, 
and adverse birth outcomes [200–202]. Lithium mining 
has also been shown to increase the concentration of 
other heavy metals, such as arsenic, in surrounding sur-
face water [203]. In traditional lithium mining, salt-rich 
brine is pumped from deep in the earth to the surface, 
forming man-made lakes that are then allowed to evap-
orate [204]. Lithium can also be mined from hard rock 
ores. Given the methods used in lithium mining, it is rea-
sonable to hypothesize that there is a significant risk of 
environmental contamination, which might lead to toxic-
ity from lithium and other metals. Additional chemicals 
are often added to the brine to facilitate the precipitation 
of unwanted compounds. Multiple instances of lithium 
mining affecting nearby communities have attracted 
media attention, such as the 2016 contamination of the 
Liqi River in Tibet resulting in the destruction of the local 
water supply and the death of livestock and fish used as 
a food source [205]. Despite these high-profile incidents, 
no studies could be found examining the health effects of 
exposure to lithium mining.

Our review revealed other concerning gaps in the 
literature, specifically a paucity of studies describing 
infectious and traumatic hazards. Mine workers often 
reside in overcrowded conditions with poor sanitation, 
infrastructure, and inadequate access to medical care. 
These conditions promote the transmission of commu-
nicable diseases such as malaria and tuberculosis [206]. 
In addition, the construction of mining facilities often 
encroaches on the natural habitats of wild animals that 
may expose workers to zoonotic pathogens [207]. Sexu-
ally transmitted diseases including HIV are also preva-
lent in many mining communities, which can be sites of 
prostitution and sex trafficking [32, 208, 209] Similarly, 
few articles discussed traumatic and violent injuries, even 
though it is well known that many miners work in unsafe 
conditions and are subjected to falls, cave-ins, injuries 
from machinery, and other hazards [210]. Traumatic haz-
ards arise from the essentially dangerous nature of min-
ing work and are often compounded by a lack of safety 

regulations and cultural and economic systems that 
incentivize workers to perform unsafe tasks.

There are multiple likely explanations for this lack of 
data. The populations most affected by mining activi-
ties are inherently vulnerable. They are often poor, and 
many are migrants. In some countries, they are subject 
to human rights violations [209]. People depend on the 
mines as a source of income and may therefore be less 
likely to engage with researchers or report accidents for 
fear of retribution or loss of employment. This can be 
compounded by the fact that small-scale mining prac-
tices are often carried out in violation of local laws. Addi-
tionally, access to healthcare is inadequate in many areas, 
and health systems that do exist may lack the ability to 
track and report outcomes. Further research and illumi-
nation of the plight of miners may also represent a con-
flict of interest with mining companies that benefit from 
a source of cheap, exploitable labor. The logistics of car-
rying out studies are therefore more difficult.

In response to these issues, some mining areas have 
implemented environmental management programs 
(EMP) aimed at mitigating the exposure to these metals 
in mining communities [48, 57, 58]. The strategies uti-
lized by these EMPs are aimed at decreasing dust emis-
sions to decrease the particulate matter in the air. This 
includes improving clean water availability; updating to 
equipment that decreases emissions; paving roads and 
frequently travelled routes; and reforesting the areas. 
Studies have shown EMPs in manganese mining com-
munities decreased the air concentration of manganese; 
however there have been variable results regarding the 
effect on health outcomes [57, 58]. Nevertheless, EMPs 
are an important step in decreasing the health risks. 
Other potential interventions to help mitigate health 
risks include increasing the use and availability of per-
sonal protection equipment as well as implementing a 
medical surveillance program to monitor exposures [48].

An interesting subset of studies in this review collected 
qualitative information via interviews that present the 
perspectives of people who work in and live near min-
ing sites [32, 49–52, 86, 109–111, 117]. Overall, there is 
evidence that affected populations are aware that mining 
poses significant health risks; however, there is economic 
and social pressure to tolerate health hazards to make 
a living. Participants reported that engaging in protests 
or voicing opposition to mining development placed 
them at risk of violent suppression from police or mili-
tary forces or ostracization from other members of the 
community. In interviews, people living near the mines 
reported a perceived connection between the growth of 
mining activities and various health problems including 
acute and chronic symptoms (e.g., respiratory illnesses, 
chest pain, chronic headaches), impaired cognitive 
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development in children, pollution of air and water, and 
destruction of farmland. Displacement of local popula-
tions by expansion of mining sites was also reported. 
These studies highlight the complex effects, both positive 
and negative, of mining presence in a community.

The results of this review are consistent with well-
documented prior data suggesting that children are at 
disproportionately increased risk from metal toxicity 
compared to adults [211–213]. Children are at increased 
risk for toxicity due to heavy metal exposure for multi-
ple reasons including their smaller body size, tendency 
to ingest non-food materials, hand-to-mouth behaviors, 
and the increased risks of exposure during physiologic 
and cognitive developmental periods. Multiple studies in 
our review reported increased adverse health outcomes 
in children relative to adults in the same populations [17, 
18, 32, 40, 41, 76]. Child labor is also unfortunately com-
mon in many mining industries. An estimated 40,000 
children work in cobalt mines in the Democratic Repub-
lic of Congo [7]. In addition to the physical hazards asso-
ciated with mine work, they also face the consequences 
of lost years of education and mental health trauma.

A significant number of studies in this review focused 
on measuring levels of metals in environmental sub-
strates such as soil, water, plant, and animal specimens 
to calculate estimated carcinogenic or non-carcinogenic 
health risks. While there was significant heterogeneity in 
the type of environmental substrate studied, collection 
method, and study design, the totality of results suggests 
significant environmental contamination across a variety 
of media poses a significant risk. Most studies reported 
calculated health risks above standard acceptable levels 
in at least one assay. While these studies do not measure 
health outcomes in human participants, environmental 
sampling can be used as a viable method of identifying 
populations that may be at risk of health effects from 
mining and should guide the development of future stud-
ies measuring direct health outcomes.

Limitations
Our study had several important limitations. First, our 
results are limited by the quality of studies included in 
our review; all data were observational, thus limiting 
the certainty of our findings. Types of bias likely intro-
duced by this limitation include selection bias as well as 
reporting bias, with many consequences of mining going 
unreported. Second, our review was limited to articles 
available in English. Given the locations where mining 
typically occurs are low- and middle-income countries, 
there are likely many reports that were not captured in 
our search. Third, our review was limited to the Pub-
Med database. Finally, while our search criteria were sys-
tematic in nature, the aim of this manuscript was not to 

conduct a systematic review of the literature. Our review 
was not prospectively registered and study quality and 
bias were not assessed. Therefore, for all of the above 
reasons, our results should be viewed as supportive of 
further research into this important field. The above 
limitations additionally reflect the current landscape of 
research into the hazards faced by miners. In that con-
text, additional, comprehensive evaluation of the con-
sequences inherent in such mining practices should be 
undertaken, and should aim to characterize additional 
key topics, such as the health effects of mining-related 
lithium toxicity and traumatic and infectious hazards 
associated with mining.

Conclusions
The information gathered in this narrative review 
strongly suggests that the global demand for LIBs and 
exponential growth of mining for cobalt, lithium, man-
ganese, and nickel presents a significant risk to human 
health via occupational and environmental exposures 
that result in both acute and chronic toxicities. This is 
compounded by the facts that human rights violations 
are common in the mining industry and that the people 
most affected are often members of vulnerable popula-
tions, including children. Further research, particularly 
regarding the health and environmental effects of mining 
for lithium, is crucial to understanding and addressing 
the risks of the world’s growing reliance on LIBs.
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