
Springer et al. Journal of Occupational Medicine and Toxicology 2013, 8:29
http://www.occup-med.com/content/8/1/29
RESEARCH Open Access
Transcriptional down-regulation of suppressor of
cytokine signaling (SOCS)-3 in chronic obstructive
pulmonary disease
Jochen Springer1,2, Frank R Scholz3, Christian Peiser1, Q Thai Dinh4, Axel Fischer1, David Quarcoo5

and David A Groneberg5*
Abstract

Background: Tobacco is a leading environmental factor in the initiation of respiratory diseases and causes chronic
obstructive pulmonary disease (COPD). Suppressor of cytokine signaling (SOCS) family members are involved in the
pathogenesis of many inflammatory diseases and SOCS-3 has been shown to play an important role in the
regulation, onset and maintenance of airway allergic inflammation indicating that SOCS-3 displays a potential
therapeutic target for anti-inflammatory respiratory drugs development. Since chronic obstructive pulmonary
disease (COPD) is also characterized by inflammatory changes and airflow limitation, the present study assessed the
transcriptional expression of SOCS-3 in COPD.

Methods: Real-time PCR was performed to assess quantitative changes in bronchial biopsies of COPD patients in
comparison to unaffected controls.

Results: SOCS-3 was significantly down-regulated in COPD at the transcriptional level while SOCS-4 and SOCS-5
displayed no change.

Conclusions: It can be concluded that the presently observed inhibition of SOCS-3 mRNA expression may be
related to the dysbalance of cytokine signaling observed in COPD.
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Introduction
Chronic obstructive pulmonary disease (COPD) is cur-
rently estimated to be the 3rd most common cause of death
in 2020 [1]. The disease is characterized by an irreversible
and progressive development of airflow limitation featuring
cough, mucus hypersecretion, inflammatory changes and
remodeling of the airway wall [2]. Next to bronchial asthma
[3,4], asbestosis [5], or tuberculosis [6,7], COPD also plays
a major role in the field of occupational and environmental
respiratory diseases [8].
COPD is related to tobacco smoke [9,10] and a common

feature in the underlying pathomechanisms may be a
dysregulation of cytokine signaling [11]. Cytokine signaling
events are accomplished by molecules such as SMADs
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(derived from the Drosophila homologue MAD and the C.
elegans homologue SMA [12,13]) or suppressors of cytokine
signaling (SOCS) [14]. SOCS molecules are a family of pro-
teins that function as negative regulators of cytokine signal-
ing pathways [14]. Next to the first members of the SOCS
family, CIS-1 and SOCS-1, that were identified as negative
feedback regulators of the signal transducer and activator
of transcription (STAT)-5 pathway [15] and inhibitors Jak
family tyrosine kinases, respectively [16], also the molecule
SOCS-3 was identified as a potent suppressor of cytokine
signaling mechanisms [17].
The expression of SOCS-3 can be induced transiently

by a large number of both inflammatory and anti-
inflammatory cytokines such as interleukin (IL)-3, IL-6,
IL-10 interferon or interferon gamma (IFN-gamma) [18].
It has also been shown that SOCS molecules can potently
inhibit the Jak/STAT pathway in various inflammatory
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Table 1 Design of human-specific primer pairs

Primer Sequence

SOCS 3 forward 5´-GAGGGTTGGAGAAACCTTCC-3´

SOCS 3reverse 5´-GGCATTTCGGTTAACATTGG-3´

SOCS 3probe 5´-ATGCATCACAGCCCTCACTCACTGT-3´

SOCS 4 forward 5´-CTGCGTGAATCCCTACCACT-3´

SOCS 4 reverse 5´-GGATGGAATGGCTGTAGTCG-3´

SOCS 4 probe 5´-CAGTTCTACCTCCTGTGTTGGTGCCA-3´

SOCS 5 forward 5´-ATCGTGCATCGACAGAGACA-3´

SOCS 5 reverse 5´-TACTGGCAGGCTGACTTGTG-3´

SOCS 5 probe 5´-CAGCACTGCCAACTTTCCCAACATT-3´

GAPDH forward 5´-ACGGGAAACCCATCACCAT-3´

GAPDH reverse 5´-CCAGCATCACCCCATTTGA-3´

GAPDH probe 5´-TTCCAGGAGCGAGATCCCGTCAAG-3´
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diseases including autoimmune arthritis [19] or experi-
mental intestinal inflammation [20].
The inhibition of cytokine signaling via the action of

SOCS may also play an important role in the patho-
physiology of chronic obstructive airway diseases [21]
and a study has shown that SOCS-3 regulates the onset
and maintenance of TH2-mediated responses in bron-
chial asthma.
Since there are no data available on the expression of

this important cytokine signal inhibitor in COPD, the
aim of the present study was to address the transcrip-
tional expression level of SOCS-3 along with SOCS-4
and SOCS-5 in bronchial tissues of a previously charac-
terized cohort of COPD patients [12,22].

Methods
Human biopsies
Transcriptional expression of SOCS-3, SOCS-4 and SOCS-
5 was assessed in bronchial biopsies of a previously charac-
terized cohort of nine COPD patients [12]. The patients´
mean age was 61 ranging from 52 to 77. All patients did
not have atopic diseases but were smokers. COPD was
characterized as level II according to the GOLD classifica-
tion [23,24]. As control group, tissues were obtained from a
previously described groups of subjects (n = 7, male and fe-
male) who were undergoing routine examinations for bron-
chial carcinoma without pathology [12]. The mean age
was 67 ranging from 50 to 77. Their forced expiratory vol-
ume in 1 second (FEV1) was over 90% (mean: 102.1%,
range: 94.6% to 113%). Bronchial mucosal biopsies were
obtained by routine fiberoptic bronchoscopy as described
previously [25]. All subjects were free of interstitial lung
diseases, tuberculosis, diffuse malignant lung diseases and
had not received radiation- or chemotherapy in the past.
The study protocol was approved by the local Ethics
Committee (Free University of Berlin).

Tissue morphology
The morphology of the tissues was assessed as previously
described using routine histology [26,27]. The biopsies were
cryopreserved and cut to cryostat sections using a routine
protocol [28,29]. In brief, after an immersion-fixation in
Zamboni-solution for 4 hours and consecutive washing
steps in phosphate-buffered solution (PBS), cryoprotection
using 18% saccharose (1604, Riedel-de Haen AG, D- Seelze)
was carried out overnight. Afterwards the biopsies were
frozen in liquid nitrogen-cooled isopentane and stored
at −80°C. The tissues were then processed to 8–10 μm
sections using a cryostat and stained with a routine
hematoxylin protocol [30,31].

RNA isolation and reverse transcription
Total RNA was isolated from the bronchial biopsies as
previously described [12]. In brief, the RNAzol (WAK-
Chemie, Bad Soden, Germany) method was performed
according to the manufacturer’s instructions and reverse
transcription was performed with superscript RT after
DNase I digestion (both Invitrogen, Karlsruhe, Germany)
according to the manufacturers protocols.

Real-time quantitative PCR
The quantitative assessment of SOCS transcripts was
conducted by the use of the ABI Prism 7700 Sequence De-
tection system and the Taqman PCR Reagent Kit (Applied
Biosystems, Überlingen, Germany) according to the ma-
nufacturer’s protocols. For sequence-specific detection,
established SOCS primer pairs were used (Table 1). An
amplification of the human glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) gene was carried out as estab-
lished internal standard. The primers were synthesized
by Roth (Karlsruhe, Germany) and the probes by IBA
(Göttingen, Germany). The following cycling conditions
were used: 50°C for 2 min, 95°C for 10 min, followed by
40 cycles of 95°C for 15 s and 60°C for 1 min. All results
are presented δδ-Ct-values.

Statistics
All data was analyzed using Graph Pad PRISM program.
The results are expressed as mean ± SEM and tested for
significant differences using the one-way ANOVA and
Bonferroni`s Multiple Comparison tests.

Results
Bronchial biopsies
COPD
The biopsies of bronchial mucosal were obtained from
nine patients with COPD. They were classified as class
II severity according to the GOLD classification and had
a FEV1 was below 80% of the norm (mean: 70.0%, range:
61.4% to 77.4%), and typical chronic symptoms including
cough, dyspnea, and sputum production. The histology



Figure 2 δδ-Ct-values of the different SOCS in healthy controls
and COPD patients, SOCS-3, SOCS-4 and SOCS-5. **p ≤ 0.01.
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revealed chronically inflamed tissues with typical signs
of COPD-like lesions. In the submucosal layers, inflam-
matory cells were present which reached to submucosal
glands (Figure 1). Also, single cell necrosis and a loss of
ciliae were found.

Control
In contrast to the COPD sections, the tissues of seven
control subjects were characterized by a regular histo-
logical pattern without any signs of inflammatory cell in-
flux or airway remodeling (data not shown).

Transcriptional SOCS expression levels
The mRNA levels of the different SOCS-3, -4 and 5 that
inhibit cytokine signaling were assessed in the COPD
tissues and compared to controls. After the presence of
all transcripts was shown by qualitative PCR (data not
shown), quantitative online PCR was performed in the
bronchial biopsies obtained from patients with COPD
and healthy controls and significant differences in gene
expression were found.
While online PCR for the two molecules SOCS-4 and

SOCS-5 did not reveal a significant expression difference,
the expression level of SOCS-3 significantly differed be-
tween the two groups of COPD and control tissues: In
controls, the δδ-Ct-values of SOCS-3 mRNA expression
was −3,99325 +/− 1,525749 indicating a high level of gene
expression. By contrast, in COPD tissues, the δδ-Ct-values
were −0,6110268 +/− 1,289377 with a p value of 0.0012 in-
dicating a highly significant downregulation of transcrip-
tional SOCS-3 expression (Figure 2).

Discussion
A large variety of mediators has been identified which may
contribute to COPD pathogenesis [11]. As in allergic
Figure 1 Morphology of biopsies assessed by hematoxylin
staining. The morphology of the COPD-biopsies was characterized
by epithelial hyperplasia and infiltration of inflammatory cells.
Original magnification × 400 times.
bronchial asthma or rhinitis, pro- and anti-inflammatory
mediators of inflammation such as tachykinins [32], vaso-
active intestinal polypeptide (VIP) [33], histamine [34], ni-
tric oxide [35,36], leukotrienes [37], or opioids [38] and
other cytokines [11] are likely to play a role in the regula-
tion of basic pathophysiological mechanisms occurring in
COPD. In the present studies, the transcriptional expres-
sion of the cytokine signaling inhibiting molecules SOCS-3,
SOCS-4 and SOCS-5 was investigated using a established
approach of real time quantitative RT-PCR [39] in bron-
chial mucosal wall biopsies from COPD patients. Tran-
scriptional quantification with the highly sensitive real time
RT-PCR was presently chosen and the protocol carried
out as previously described. Since the biopsies´ protein
contents were not sufficiently high for the performance of
western blotting. Previous experiments have demonstrated
that the transcriptional expression SOCS-3 is similar to its
translational expression [40], indicating that quantitative
online PCR represents a valid tool to assess the overall ex-
pression level [41].
We found that in COPD tissues, the SOCS-3 δδ-Ct-

values were significantly differing from control values in-
dicating a down-regulation in the state of COPD.
Recently, a study has focused on the effects of Fluticasone

propionate (FP) and Salmeterol (SAL) on SOCS expression
since they are commonly used in combination therapy for
patients with COPD [42]. They evaluated the effects of FP/
SAL and tobacco smoke (TS) on SOCS-3 in bronchial air-
way epithelial cells (BAEpCs) which were exposed to TS
and subsequently treated with FP or SAL alone or in com-
binations in the presence and absence of mitogen activated
protein kinase (MAPK) inhibitors for either Erk1/Erk2, or
p38 or PI3 kinase [42]. In BAEpCs, TS induced IL-6 ex-
pression via ERK1/ERK2 MAPK pathway and FP/SAL
inhibited TS mediated IL-6 expression. Interestingly, TS
downregulated the SOCS-3 expression [42]. This is parallel
to our present findings in COPD tissues. The down-
regulation was mediated via the activation of Erk1/Erk2,
and p38 MAPK signaling. When TS exposed BAEpCs were
treated with FP/SAL SOCS-3 expression was normalized.
Also, FP/SAL combinations induced significantly higher
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expression of SOCS-3 in BAEpCs when compared to the
individual drugs [42].
This transcriptional down-regulation presently ob-

served for COPD might have an impact on the balance
of cytokines that determine general immune responses
and the onset of TH1- and TH2-mediated effects. A hall-
mark study focused on the expression and function of
SOCS-3 in allergic bronchial asthma since the functional
relevance of SOCS-3 in the allergic, TH2-mediated im-
mune response was not clear [43]. It was shown that the
expression level of SOCS-3 was increased in asthma and
correlated with the pathology of this TH2-mediated aller-
gic disease. Since the T cell-constitutive expression of
SOCS-3 in an animal model led to an increase in airway
hyperreactivity it was suggested that a TH2-specific ex-
pression of SOCS-3 plays an important role in the dis-
ease [43] and that SOCS-3 may not only be a marker for
allergic diseases but may also represent a novel thera-
peutic target.
In contrast to the increased expression in bronchial

asthma, we here found a transcriptional down-regulation
of SOCS-3 in COPD. In this respect, there are major dif-
ferences in the cellular inflammation between COPD
and asthma. While mast cells and eosinophils play a
prominent role in allergic asthma, the major inflamma-
tory cell types in COPD are macrophages and neutro-
phils [44-46] and an increased sputum neutrophilia is
related to an accelerated decrease in FEV1 and more
prevalent in COPD patients with chronic cough and
sputum production [47]. Lymphocytes are also involved
in inflammatory mechanisms underlying COPD [48,49]
but the lymphocyte repertoire differs to a large extend
if compared with asthma. Increased numbers of CD8-
positive T-lymphocytes are found in the airways of
COPD patients [44-46] and the degree of airflow ob-
struction correlates with their numbers [50] in contrast
to allergic asthma, which is characterized by increased
numbers of CD4-positive T-lymphocytes [51,52].
Similar to these differences in inflammatory cell popu-

lations that was demonstrated for asthma and COPD in
the past years, a different expression pattern of cytokines
and cytokine signaling inhibitors may be present in
asthma and COPD. To this extend, we here shown that
SOCS-3 is transcriptionally downregulated in COPD
and therefore shows an expression pattern in COPD re-
ciprocal to that in asthma, in which the molecule was
shown be upregulated [43].
A further allergic disease was also characterized to have

an expression level of SOCS-3 contrary to the presently
identified COPD profile [41]. It was shown elevated
mRNA levels of SOCS-3 and GATA-3 are present in
PBMC of patients with atopic dermatitis. In contrast to
GATA-3 mRNA levels which were normalized after a suc-
cessful therapy, the levels SOCS-3 did not change [41].
It would be interesting to study the functional role of
SOCS-3 using an animal model of experimental COPD
and different approaches to mimic COPD have been de-
veloped in the past but are limited in comparison to
models of allergic asthma since they usually do not
mimic all major features of human COPD.
Depending on the duration and intensity of exposure,

noxious stimuli such as tobacco smoke, nitrogen dioxide,
or sulfur dioxide could be used to induce signs of chronic
inflammation and airway remodeling wile emphysema
could be achieved by combining such an exposure with the
instillation of tissue-degrading enzymes. However, this such
studies can not be realized at the moment since mice either
constitutively expressing or lacking the SOCS-3 gene have
a defect in fetal liver erythropoiesis or placental function,
both leading to embryonic lethality [53,54]. In future, con-
ditionally gene-targeted systems may be of help to answer
the question of the functional role of SOCS-3 in COPD
and modern techniques such as laser-assisted single/oligo
cell analysis [55] may further dissect the impaired SOCS
signaling pathway on the cellular level. This should be com-
bined with molecular biology [55,56], histo-/cytochemistry
[57-59] and pharmacological [12,35,60] techniques.
In conclusion, the present studies revealed a direct link

between COPD and alterations in the transcriptional regu-
lation of SOCS-3 that was demonstrated to play a major
role in bronchial asthma. The present results indicate that
the regulation of SOCS may differ in COPD compared to
asthma and suggest that these cytokine signaling inhibitors
also play a role in pathomechanisms underlying the in-
flammatory changes in COPD.
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