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Abstract

Background: Cumulative epidemiological evidence suggests that shift work exerts harmful effects on human
health. However, the physiological mechanisms are not well understood. This study aimed to examine the impact
of shift work on the dysregulation of the hypothalamic-pituitary-adrenal axis, i.e. diurnal cortisol rhythm.

Methods: Seventy physicians with a mean age 30 years participated in this one-year longitudinal study. Working
schedules, either shift work or regular schedules with day shift, were assessed at baseline. Salivary cortisol samples
were collected on two consecutive regular working days, four times a day (including waking, + 4 h, + 8 h, and +
16 h), at both baseline and the one-year follow-up. The diurnal cortisol decline (slope) and total cortisol
concentration (area under the curve, AUC) were calculated.

Results: After adjusting for cortisol secretion at baseline and numerous covariates, shift work at baseline
significantly predicted a steeper slope (p < 0.01) and a larger AUC (p < 0.05) of diurnal cortisol rhythm at follow-up
in this sample of physicians. In particular, waking cortisol at follow-up was significantly higher among those
engaged in shift work than day shift (p < 0.01).

Conclusions: Our findings support the notion that shift work changes the diurnal cortisol pattern, and is predictive
of increased cortisol secretion consequently in junior physicians.
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Background
Shift work is common in contemporary working life. In
the United States, about 29% of the employees had their
work time arrangements as shift work, according the
2010 National Health Interview Survey [1]; while the
2010 European Working Conditions Survey indicated
that more than 20% workers in Europe were engaged in
shift work [2]. In the past decades, several chronic health
conditions have been identified to be related to shift
work [3]. For example, in 2007 the World Health
Organization International Agency for Research on Cancer
announced the probable association between shift work
and cancer risk [4], particularly breast cancer in women
[5] and prostate cancer in men [6]; in addition, it has been

observed that shift work increases risk of diabetes [7],
myocardial infarction, all coronary events, and ischaemic
stroke [8].
Some physiological mechanisms have been proposed

to explain links between shift work and adverse health
outcomes. Among others, shift work-caused disruption
of the circadian time organization is one core explan-
ation, which exerts far-reaching effects at the molecular
and cellular levels. Exposure to shift work during one’s
occupational career, through the close physiological
interaction of circadian clock-related and cell-cycle
factors, may result in a variety of processes that initiate
epigenetic modifications, with malignant potential.
Supportively, expression and methylation of circadian
genes, such as BMAL1 and PER1, are evident among
shift workers in recent years [9–11]. Meanwhile, mela-
tonin which is produced in the pineal gland and circu-
lated during darkness has received significant attention
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in shift work research. It exerts broad effects, via specific
receptors or entry into cells directly as a small lipophilic
molecule, playing a crucial role in regulating the circa-
dian time organization. Commonly co-existing with
circadian disruption, “melatonin hypothesis” was formu-
lated in 1987 to link melatonin suppression and cancer
risk [12]. To date, much evidence has been gained in the
past three decades, on melatonin suppression due to
shift work [13, 14]. In addition, shift work is closely
related to sleep deprivation and disturbance, causing
immune dysfunction as elevated concentrations of
C-reactive protein and interleukin 6, and an increase in
cellular stress in terms of an altered balance of
pro-oxidative and anti-oxidative markers [15].
Regarding the cardiometabolic risk associated with

shift work, circadian disruption represents a crucial
pathway as well [16, 17]. It has been postulated that
circadian disruption induced by shift work would impair
the functioning of the hypothalamic-pituitary-adrenal
(HPA) axis which regulates the biological response to
stressful stimuli [18], while abnormal HPA axis activity
increases the risk of subsequent cardiometabolic condi-
tions [19–21]. Cortisol is the most widely studied bio-
marker of the HPA axis, and it is usually assayed from
saliva, serum, urine, or hair [22]. Cortisol shows a strong
diurnal rhythm. In the morning cortisol peaks during
awakening, then it declines gradually over the day till
bedtime [23, 24]. In general, different features of the cor-
tisol diurnal pattern have been frequently examined as
indicators of HPA axis function, including the waking
cortisol response which is superimposed on the circa-
dian cycle of cortisol release [25], the slope of cortisol
decline over the day and the total cortisol concentration
over the day such as area under the curve (AUC) [26].
So far, epidemiological studies on shift work and corti-

sol have found inconsistent, even contrasting, results.
For instance, two French studies found that serum corti-
sol in the evening was increased among workers in night
shift [27, 28]. Using urinary or hair cortisol, two studies
from the US and the Netherlands respectively observed
that shift workers had significantly higher cortisol levels
[29, 30]. Also, a British study showed that shift work was
associated with higher waking cortisol as well as total
AUC in saliva [31]. By contrast, Hung et al. reported
lower cortisol AUC in shift workers [32]. In addition,
five studies indicated negative associations between shift
work and waking salivary cortisol [13, 33–36]. Regarding
the decline rate of cortisol rhythm over the day, a flatter
slope was demonstrated by three studies from the UK,
US, and Canada, respectively [31, 32, 37]. By contrast, a
Canadian study among paramedics did not find any rela-
tionships between shift work and cortisol secretion [38].
Nevertheless, we need to bear it in mind that the studies
mentioned above were all with cross-sectional design.

Due to the simultaneous assessment of shift work and
cortisol it remains impossible to draw any causal infer-
ence based on such studies. In the past decade, only few
longitudinal studies on shift work and cortisol trends
over time have been published. Four studies examined
recovery of cortisol diurnal pattern after shift work. Two
Norwegian studies among offshore oil rig workers found
that cortisol diurnal profiles were not recovered on day
7 and day 11 after 2-week 12-h night-shifts [39, 40];
while cortisol diurnal profile was recovered on day 5
after 5-day 8-h night-shifts among Chinese nurses [41],
and it was recovered on day 7 after 7-day 8-h
night-shifts among Danish police officers [42]. When the
follow-up period is prolonged, the findings seem to
become mixed. Kudielka et al. followed up a sample of
German workers in an electronic manufacturing plant
for 2 months, and they reported that AUC of salivary
cortisol was significantly increased in the group of night
shift [43]; similarly, a Dutch study in police officers
suggested waking salivary cortisol began to rise from
baseline to significantly higher levels at one-year
follow-up after they started shift duty, then declined
slightly at two-year follow-up [44]. However, Copertaro
et al. did not confirm any significant association of shift
work with serum cortisol among Italian nurses with
one-year follow-up [45]. Overall, most of studies on shift
work and cortisol had a major limitation in terms of
their small sample sizes (usually < 50 subjects).
We therefore carried out a longitudinal study with

one-year follow-up, in order to investigate the impact of
shift work on the dysregulation of the HPA axis in terms
of diurnal cortisol rhythm, in a sample of hospital physi-
cians during residency who were at high risk of circadian
disruption due to shift work schedule arrangement.

Methods
Study sample
At baseline, 1000 junior physicians in their 2nd or 3rd
year of specialty training (residency) working in the
wider area of Munich, Germany, were randomly selected
to participate in a questionnaire survey, based on regis-
tration data of the Bavarian Chamber of Medical
Doctors. A total of 621 completed questionnaires were
returned (response rate 62.1%). Among the 1000 invited
physicians, one third random sample, i.e., 334 subjects
were also invited to participate in a series of saliva tests.
Saliva samples were collected on 2 consecutive working
days (which were not during or on the days after night
shift), 4 times a day, including time points at waking
(0 h), + 4 h, + 8 h, and + 16 h. Questionnaires were
usually answered 1–3 days before saliva sampling. Of the
334 participants, 146 returned saliva samples (response
rate: 43.7%). However, 57 samples had to be excluded
due to steroid treatment, sampling error, low volume of
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saliva, or missing data on any 4 times of samples, which
left valid saliva samples 99 subjects at baseline. After
one year we followed up those 146 physicians who had
previously responded both questionnaire survey and
saliva samples. Among them, 91 physicians (response
rate 62.3%) returned two-day saliva samples (same pro-
cedure as baseline). From those, 21 were excluded from
further analysis due to the above mentioned reasons.
Thus, valid cortisol measurements at both baseline and
follow-up were available from 70 participants.
The study was approved by the Committee on

Ethics of Human Research of the Medical Faculty,
Ludwig-Maximilians University Munich (No. 016/04),
and participants signed a letter of informed consent.

Measures
In the baseline questionnaire, the physicians were asked
“Do you take shift work (which is regular work outside
normal daily working hours)?” with two response
categories of “No” and “Yes”.
Saliva samples were collected using a small cotton

swab with no additives (Salivette®, Sarstedt, Num-
brecht, Germany). Participants were instructed to
chew on the swab for 3 min, put the swab into the
Salivette, note the time of sampling, keep the samples
at ambient temperature and return them to the lab
within 1 week. Cortisol remains stable for this period
of time. Participants were asked to collect samples on
2 days. All saliva samples were stored in the labora-
tory at − 20 °C until cortisol analysis. Cortisol
concentrations were determined employing a highly
sensitive chemiluminescence immunoassay (Cortisol
Saliva LIA, IBL, Hamburg, Germany). Endpoint detec-
tion was done using a chemiluminescence reader
(Victor, Perkin Elmer, Rodgau, Germany). The assay
shows a relevant cross reaction with the following
steroids: Prednisolone (57%), 11-deoxycortisol (12%),
corticosterone (2.5%), cortisone (2%) and prednisolone
(1%). The lower detection limit of this assay is less
than 0.16 ng/ml. To reduce error variance caused by
interassay imprecision, all samples from one subject
were assayed in the same run. In our hands,
within-assay coefficient of variation was 7.2 and 5.4%
at 0.8 and 5.0 ng/ml, respectively. Between-assay coef-
ficient of variation at the same concentrations was
9.45 and 6.6%, respectively. Since cortisol data from
two consecutive working days were available, we cal-
culated the mean values to represent cortisol levels
for the four sampling time points, waking (0 h), +
4 h, + 8 h, and + 16 h, respectively. Diurnal slope was
produced by regressing cortisol values on sampling
time, with anchorage on the waking point, to generate
a mean rate of reduction in cortisol per hour [26,
31]. Total cortisol concentration over the day (AUC,

ng/ml × hours) was calculated using a formula for
area under the curve with respect to ground, based
on all the four sampling time points [46].
In addition, information on age, gender, professional

tenure, working hours, partnership, children, smoking,
risky alcohol use, physical activity, overweight and
obesity was also collected at baseline.

Data analysis
Firstly, descriptive statistics were performed. Means
and standard deviations (SD) were calculated for con-
tinuous variables, and relative frequencies for categor-
ical variables. Due to the fact we draw on a subsample
to investigate cortisol research, we also compared the
baseline characteristics between cortisol-involved
participants in the current analyses (N = 70) and
cortisol-involved non-participants (N = 551) within the
whole study population, using Student’s t-test for
continuous variables or Chi-square test for categorical
variables. Secondly, we further tested the differences of
baseline characteristics and cortisol secretion levels
between the groups without or with shift work. Thirdly,
differences of cortisol levels on four sampling time
points (waking (0 h), + 4 h, + 8 h, and + 16 h) at
follow-up were examined by analysis of covariance
adjusting for age, gender, professional tenure, working
hours, partnership, children, smoking, risky alcohol use,
physical activity, overweight and obesity at baseline;
more importantly, we also controlled for cortisol levels
at baseline to account for potential ceiling effect (i.e.,
upward change less likely for higher baseline scores)
and floor effect (i.e., downward change less likely for
lower baseline scores). Fourthly, multivariate linear
regression was applied to examine longitudinal associa-
tions between shift work levels at baseline (independent
variable) and diurnal cortisol pattern (slope and AUC)
at follow-up (dependent variables). The results are
shown as regression coefficients (β) with 95% confi-
dence intervals (CI). These analyses were adjusted for
biological factors (age and gender), work factors (pro-
fessional tenure and working hours), family factors
(partnership and children), and behavioral factors
(smoking, risky alcohol use, physical activity, over-
weight and obesity) at baseline as well as baseline corti-
sol values, in order to assess robustness of associations.
Finally, considering the nature of repeated measures in
longitudinal studies, particularly when correlations at
different time-points within-subjects need to be
addressed, we also used mixed regression modeling to
examine the longitudinal associations between shift
work at baseline and repeated measures of cortisol
levels over the one-year period of follow-up [47]. All
analyses were conducted with SAS 9.4 SAS Institute
Inc., North Carolina, US).
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Results
Table 1 shows the characteristics of the study samples
(with valid cortisol data) at baseline (N = 70). The mean
age equaled nearly 30 years, and 57% were women.
Seventy-six percent were living with partners, and 83%
had no children. Regarding health-related behaviors, the
majority did not smoke, did not have risky alcohol use,
were engaged in regular physical activity, and the vast
majority had normal body weight. Half of the partici-
pants were in their first 2 years of medical residency,
and mean working time was nearly 51 h/week. The
cortisol-involved subjects (N = 70) were fairly compar-
able to the others who did not participate in corisol
collection or did not have valid cortisol data (N = 551)
with respect to socio-demographic, work-related, or
behavioral characteristics.
Out of 70 study subjects, 19 (27%) physicians were

engaged in shift work at baseline. Typical diurnal cor-
tisol rhythm was observed, i.e., the cortisol level was
highest at waking, and then declined gradually over
the day. The overall cortisol slope was − 0.39, and
AUC was 42.38. However, none of the study charac-
teristics including all cortisol indicators was signifi-
cantly different between physicians without and with
shift work (Table 2).

Figure 1 illustrates diurnal cortisol rhythm at follow-up
for the shift work group vs. the non-shift work group.
After adjustment for socio-demographic, behavioral, work
and family factors, as well as cortisol levels at baseline,
waking cortisol was found to be significantly higher
among physicians engaged in shift work (p < 0.01),
whereas cortisol levels at the other three time points (+
4 h, + 8 h, and + 16 h) did not differ by shift work status
(details not shown).
The results of linear regression are shown in the

Table 3. Throughout the adjustment procedure from
models I to V, the associations remained stable. In the
fully (final) adjusted model, shift work at baseline was
associated with increased cortisol slope negatively by
0.12 (p < 0.01) and elevated total cortisol AUC positively
by 6.64 (p < 0.05) 1 year later, indicating steeper slope
and larger AUC over the day. Notably, mixed regression
modeling, while taking the correlations of cortisol at
baseline and at follow-up into account, exerted very
similar findings (Table 4).

Discussion
The aim of our study was to examine the longitudinal
impact of shift work on diurnal cortisol rhythm. Drawing
on a sample of junior physicians from Germany, we found

Table 1 Characteristics of cortisol-involved participants and non-participants at baseline

Variables Cortisol-involved participants Cortisol-involved non-participants p

N = 70 N = 551

Age (years) (mean ± SD) 30.61 ± 2.63 30.51 ± 2.72 0.7777

Working hours per week (mean ± SD) 50.86 ± 9.46 51.18 ± 9.66 0.7903

Gender Men 30, 42.86% 273, 49.55% 0.2916

Women 40, 57.14% 278, 50.45%

Partnership No 17, 24.29% 132, 23.96% 0.9515

Yes 53, 75.71% 419, 76.04%

Children No 58, 82.86% 462, 83.85% 0.8325

Yes 12, 17.14% 89, 16.15%

Professional tenure ≤ 2 years 34, 48.57% 239, 43.38% 0.4094

> 2 years 36, 51.43% 312, 56.62%

Shift work No 51, 72.86% 375, 68.06% 0.4151

Yes 19, 27.14% 176, 31.94%

Smoking No 59, 84.29% 448, 81.31% 0.5442

Yes 11, 15.71% 103, 18.69%

Risky alcohol use No 63, 90.00% 486, 88.20% 0.6583

Yes 7, 10.00% 65, 11.80%

Physical activity Inactive 18, 25.71% 157, 28.49% 0.6263

Active 52, 74.29% 394, 71.51%

Overweight and obesity No 60, 85.71% 446, 80.94% 0.3331

Yes 10, 14.29% 105, 19.06%

Difference determined by Student’s t-test or Chi-square test
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that shift work at baseline significantly changed the diur-
nal cortisol pattern at follow-up, in terms of higher waking
cortisol, steeper slope and larger AUC, thereby predicting
increased cortisol secretion at follow-up.
To date, cross-sectional studies generated contrasting

evidence on the relationships between shift work and
cortisol. As we mentioned above, in order to enable
causal inference, longitudinal design is preferable. There-
fore, the three longitudinal studies in the past decade de-
serve a close look. The Dutch study found an increase in
waking salivary cortisol when police officers commenced
duty of shift work 1 year later, and the effect was main-
tained for almost 2 years [44], while the German study,
among industrial workers, suggested more cortisol
secretion in saliva as larger AUC by changing work
schedule from day shift to night shift for 2 months [43].
However, these two studies did not set an external refer-
ence group, that is, pre-and-post comparisons were
actually conducted within subjects. The research design
of the third study, conducted among Italian nurses, was
quite similar to ours, with an external reference group

(daytime work), with a one-year follow-up, and with ad-
justment for baseline cortisol values to take ceiling and
floor effect into account [45]. Unfortunately, that study
did not suggest any significant associations between shift
work at baseline and cortisol levels at follow-up. Poten-
tial explanations might pertain to the approach to corti-
sol measurement, i.e., serum cortisol, because blood
sampling itself represented acute stress reaction; and
sampling point was one time only, i.e., 8:30–9:30 in the
morning, resulting that the diurnal cortisol rhythm was
impossible to be investigated [45].
Strengths of our study include its longitudinal study

design to explore the potential causal association of
baseline shift work and future changes in diurnal cortisol
pattern which requires multiple sampling time points
over the day. Furthermore, we recruited relatively larger
sample size empowering our ability to detect fairly mod-
est associations with statistical significance compared to
most of earlier studies. To our knowledge, our study also
produced first evidence of a longitudinal link between
shift work and the cortisol slope, in addition to existing

Table 2 Characteristics of study subjects at baseline

Variables Shift work: No Shift work: Yes p Total (N =
70)N = 51 N = 19

Age (years) (mean ± SD) 30.57 ± 2.48 30.74 ± 3.05 0.8138 30.61 ± 2.63

Working hours per week (mean ± SD) 50.82 ± 10.27 50.95 ± 7.08 0.9616 50.86 ± 6.46

Gender Men 25, 49.02% 5, 26.32% 0.0878 30, 42.86%

Women 26, 50.98% 14, 73.68% 40, 57.14%

Partnership No 12, 23.53% 5, 26.32% 0.8090 17, 24.29%

Yes 39, 76.47% 14, 73.68% 53, 75.71%

Children No 43, 84.31% 15, 78.95% 0.5963 58, 82.86%

Yes 8, 15.69% 4, 21.05% 12, 17.14%

Professional tenure ≤ 2 years 27, 52.94% 7, 36.84% 0.2307 34, 48.57%

> 2 years 24, 47.06% 12, 63.16% 36, 51.43%

Smoking No 42, 82.35% 17, 89.47% 0.4666 59, 84.29%

Yes 9, 17.65% 2, 10.53% 11, 15.71%

Risky alcohol use No 45, 88.24% 18, 94.74% 0.4201 63, 90.00%

Yes 6, 11.76% 1, 5.26% 7, 10.00%

Physical activity Inactive 13, 25.49% 5, 26.32% 0.9440 18, 25.71%

Active 38, 74.51% 14, 73.68% 52, 74.29%

Overweight and obesity No 45, 88.24% 15, 78.95% 0.3234 60, 85.71%

Yes 6, 11.76% 4, 21.05% 10, 14.29%

Cortisol at waking, 0 h (ng/ml) (mean ± SD) 7.90 ± 4.82 8.36 ± 3.55 0.7003 8.02 ± 4.50

Cortisol at +4 h (mean ± SD) 2.90 ± 2.34 2.84 ± 1.46 0.9029 2.88 ± 2.13

Cortisol at + 8 h (mean ± SD) 1.98 ± 1.19 1.59 ± 0.98 0.2078 1.87 ± 1.15

Cortisol at + 16 h (mean ± SD) 0.91 ± 0.70 0.83 ± 0.65 0.6567 0.89 ± 0.68

Cortisol slope (mean ± SD) −0.38 ± 0.24 − 0.41 ± 0.17 0.6137 − 0.39 ± 0.22

Total cortisol AUC (ng/ml × hours) (mean ± SD) 42.91 ± 20.55 40.95 ± 14.30 0.7037 42.38 ± 18.98

Difference determined by Student’s t-test or Chi-square test
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longitudinal findings on waking cortisol and total corti-
sol AUC [43, 44]. Nevertheless, our study also suffered
several limitations. Firstly, just like in many previous
studies on shift work, our assessment of shift work was
not comprehensive enough [48]. In our study, partici-
pants only reported whether they were engaged into
shift work. Additional information of interest had related
to, (i) shift system on rotating or permanent schedule,
regular or irregular arrangement; (ii) cumulative length
of exposure; and (iii) shift intensity with time off (recov-
ery days) between shifts [48]. Secondly, we need to men-
tion the age difference and its effect on circadian impact
of shift work. Both our study and one prior longitudinal
study [44] identified higher waking cortisol by shift
work, but many studies found shift work was associated
with lower levels of waking cortisol [13, 33–36]. Also,
we observed shift work steepened the decline rate of
cortisol rhythm, whereas flatter slope was reported by

other studies [31, 32, 37]. Age might serve as one poten-
tial explanation. The mean age was 30 years in our study
and 27 years in the study by Lammers-van der Holst et
al., respectively [44]. However, the mean age of most
other studies was around 40 years or even older. Plenty
of research has testified that, compared to younger
people, waking cortisol is relatively lower and evening
cortisol is relative higher in older people [49, 50]. This
may imply that the pattern of shift work-caused diurnal
cortisol change may differ in younger workers from age-
ing workers. The HPA axis is activated quickly in the
morning and recovers in the evening (i.e., steeper corti-
sol slope) among young workers exposed to shift work;
whereas the effect of shift work is obvious on evening
cortisol but not on waking cortisol (i.e., flatter slope)
among older workers. Certainly, future research on age,
shift work, and HPA axis regulation is warranted.
Thirdly, in our study, a cortisol sample was collected

Table 3 Longitudinal associations between shift work at baseline and diurnal cortisol pattern at follow-up (N = 70)

Cortisol slope Model I Model II Model III Model IV Model V

Shift work: No 0 0 0 0 0

Shift work: Yes −0.09 (− 0.18, − 0.01)* −0.11 (− 0.20, − 0.02) * −0.11 (− 0.20, − 0.02)* −0.12 (− 0.21, − 0.04)** −0.12 (− 0.21, − 0.03)**

Total cortisol AUC Model I Model II Model III Model IV Model V

Shift work: No 0 0 0 0 0

Shift work: Yes 5.36 (0.20, 10.52) * 6.19 (1.13, 11.25) * 6.33 (1.25, 11.41) * 6.71 (1.55, 11.86) * 6.64 (1.48, 11.79) *

Linear regression, β (95% CI), *p < 0.05, **p < 0.01
Model I: adjustment for biological factors (age and gender)
Model II: Model I + additional adjustment for work factors (professional tenure and working hours) at baseline
Model III: Model II + additional adjustment for family factors (partnership and children) at baseline
Model IV: Model III + additional adjustment for behavioral factors (smoking, risky alcohol use, physical activity, overweight and obesity) at baseline
Model V: Model IV + additional adjustment for cortisol secretion at baseline

Fig. 1 Diurnal pattern of cortisol secretion at follow-up according to shift work at baseline. (Solid line represents cortisol pattern at follow-up for
physicians with shift work status “no” at baseline (N = 51); dashed line represents cortisol pattern at follow-up for physicians with shift work status
“yes” at baseline (N = 19); Error bars represent standard errors of adjusted means (ng/ml) of four time points cortisol levels at follow-up)

Li et al. Journal of Occupational Medicine and Toxicology  (2018) 13:23 Page 6 of 9



only on a single occasion in the morning, i.e., at waking.
In psychoneuroendocrinological research, data on two
sampling time points in the morning is generally pre-
ferred. If appropriately timed, those two assessments re-
flect the so-called “cortisol awakening response”, which
is conceptualized as “a sharp increase in cortisol levels
across the first 30-45 min following morning awakening”
[51]. However, sampling accuracy and participants’
adherence are the major challenges in practice. Lacking
data of cortisol awakening response is one main limitation
regarding the research of diurnal cortisol rhythm. For fu-
ture research, the consensus guidelines by an expert panel
from the International Society of Psychoneuroendocrinol-
ogy would be of great help [51]. Finally, as the current find-
ings are restricted to young working people and one single
occupation only, the ability of generalization to other age
categories and occupations is limited. More longitudinal
studies with larger sample size covering wider age range
and various occupations are urgently needed in future.
As stated in a recent report from the US National

Toxicology Program’s workshop on shift work at night,
artificial light at night, and circadian disruption, “Under-
standing potential mechanisms and characteristics of
light or shift work that are related to circadian disrup-
tion or biomarkers of disease may help identify interven-
tions to protect public health.” [52] The available
research evidence on shift work and diurnal cortisol
rhythm would provide meaningful information to future
interventions regarding work schedule management. For
instance, according to a handful studies with respect to
recovery of cortisol diurnal pattern after shift work, it
would be desirable to allow for sufficient time periods
off between shifts, such as 2 consecutive night shift days
+ 2 consecutive recovery days, or 5 + 5, 7 + 7, 14 + 14 ar-
rangements [39–42]. Moreover, a review published in
2014 identified 44 intervention studies on health im-
provement among shift workers. In general, results sup-
port the benefits of fast-forward rotating shift schedules,
i.e., morning-evening-night [53]. Specifically, compared
to fast-backward rotating shifts, fast-forward rotating
shifts exerted lower cortisol levels during the morning
and night shifts [54].

Conclusions
In conclusion, our longitudinal study, among junior phy-
sicians from Germany, supports the notion that shift
work at baseline detrimentally affects the diurnal cortisol
pattern 1 year later, specifically, higher waking cortisol,
steeper slope and increased total cortisol secretion.
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Cortisol slope Total cortisol AUC

Shift work: No 0 0

Shift work: Yes −0.10 (− 0.17, − 0.03)** 5.84 (1.36, 10.32)*

Mixed regression, β (95% CI), *p < 0.05, **p < 0.01
Adjustment for biological factors (age and gender), work factors (professional tenure and working hours), family factors (partnership and children), behavioral
factors (smoking, risky alcohol use, physical activity, overweight and obesity) at baseline
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