Ali N, Mattsson K, Rissler J, Karlsson HM, Svensson CR, Gudmundsson A, et al. Analysis of nanoparticle-protein coronas formed in vitro between nanosized welding particles and nasal lavage proteins. Nanotoxicology. 2016;10(2):226–34.
Article
CAS
PubMed
Google Scholar
Antonini JM. Health effects of welding. Crit Rev Toxicol. 2003;33(1):61–103.
Article
CAS
PubMed
Google Scholar
Antonini JM, Lewis AB, Roberts JR, Whaley DA. Pulmonary effects of welding fumes: review of worker and experimental animal studies. Am J Ind Med. 2003;43(4):350–60.
Article
CAS
PubMed
Google Scholar
Ibfelt E, Bonde JP, Hansen J. Exposure to metal welding fume particles and risk for cardiovascular disease in Denmark: a prospective cohort study. Occup Environ Med. 2010;67(11):772–7.
Article
CAS
PubMed
Google Scholar
Zeidler-Erdely PC, Kashon ML, Battelli LA, Young SH, Erdely A, Roberts JR, et al. Pulmonary inflammation and tumor induction in lung tumor susceptible A/J and resistant C57BL/6J mice exposed to welding fume. Part Fibre Toxicol. 2008;5:12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Reisgen U, Geffers C, Willms K, Angerhausen M, Deckert K, Hof S, et al. Low-energy thermal joining with zinc and tin base solder for application in vehicle construction brazing, high temperature brazing and diffusion bonding. DVS-Berichte. 2013;293:272–7.
CAS
Google Scholar
Blanc PD, Boushey HA, Wong H, Wintermeyer SF, Bernstein MS. Cytokines in metal fume fever. Am Rev Respir Dis. 1993;147(1):134–8.
Article
CAS
PubMed
Google Scholar
Kuschner WG, D'Alessandro A, Wong H, Blanc PD. Early pulmonary cytokine responses to zinc oxide fume inhalation. Environ Res. 1997;75(1):7–11.
Article
CAS
PubMed
Google Scholar
Baumann R, Brand P, Chaker A, Markert A, Rack I, Davatgarbenam S, et al. Human nasal mucosal C-reactive protein responses after inhalation of ultrafine welding fume particles: positive correlation to systemic C-reactive protein responses. Nanotoxicology. 2018;12(10):1130–47.
Article
CAS
PubMed
Google Scholar
Baumann R, Joraslafsky S, Markert A, Rack I, Davatgarbenam S, Kossack V, et al. IL-6, a central acute-phase mediator, as an early biomarker for exposure to zinc-based metal fumes. Toxicology. 2016;373:63–73.
Article
CAS
PubMed
Google Scholar
Baumann R, Gube M, Markert A, Davatgarbenam S, Kossack V, Gerhards B, et al. Systemic serum amyloid A as a biomarker for exposure to zinc and/or copper containing metal fumes. J Expo Sci Environ Epidemiol. 2018;28(1):84–91.
Article
CAS
PubMed
Google Scholar
Markert A, Baumann R, Gerhards B, Gube M, Kossack V, Kraus T, et al. Single and combined exposure to zinc- and copper-containing welding fumes Lead to asymptomatic systemic inflammation. J Occup Environ Med. 2016;58(2):127–32.
Article
CAS
PubMed
Google Scholar
Krabbe J, Beilmann V, Gerhards B, Markert A, Thomas K, Kraus T, et al. The effects of repeated exposure to zinc- and copper-containing welding fumes on healthy volunteers. J Occup Environ Med. 2019;61(1):8–15.
Article
CAS
PubMed
Google Scholar
Aweimer A, Jettkant B, Monse C, Hagemeyer O, van Kampen V, Kendzia B, et al. Heart rate variability and cardiac repolarization after exposure to zinc oxide nanoparticles in healthy adults. J Occup Med Toxicol. 2020;15:4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, et al. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol. 2009;6:14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cho WS, Duffin R, Howie SE, Scotton CJ, Wallace WA, Macnee W, et al. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol. 2011;8:27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dempsey JL, Cui JY. Long non-coding RNAs: a novel paradigm for toxicology. Toxicol Sci. 2017;155(1):3–21.
Article
CAS
PubMed
Google Scholar
Zhang Y, Sun L, Xuan L, Pan Z, Li K, Liu S, et al. Reciprocal changes of circulating long non-coding RNAs ZFAS1 and CDR1AS predict acute myocardial infarction. Sci Rep. 2016;6:22384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen C, Shen H, Huang Q, Li Q. The circular RNA CDR1as regulates the proliferation and apoptosis of human cardiomyocytes through the miR-135a/HMOX1 and miR-135b/HMOX1 axes. Genet Test Mol Biomarkers. 2020;24(9):537–48.
Article
CAS
PubMed
Google Scholar
Yang Y, Cai Y, Wu G, Chen X, Liu Y, Wang X, et al. Plasma long non-coding RNA, CoroMarker, a novel biomarker for diagnosis of coronary artery disease. Clin Sci (Lond). 2015;129(8):675–85.
Article
CAS
Google Scholar
Cai Y, Yang Y, Chen X, Wu G, Zhang X, Liu Y, et al. Circulating ‘lncRNA OTTHUMT00000387022’ from monocytes as a novel biomarker for coronary artery disease. Cardiovasc Res. 2016;112(3):714–24.
Article
CAS
PubMed
Google Scholar
Lin YZ, Wu YP, Ke ZB, Cai H, Chen DN, Chen SH, et al. Bioinformatics analysis of the expression of key long intergenic non-protein coding RNA genes in bladder cancer. Med Sci Monit. 2020;26:e920504.
CAS
PubMed
PubMed Central
Google Scholar
Chen H, Wang X, Yan X, Cheng X, He X, Zheng W. LncRNA MALAT1 regulates sepsis-induced cardiac inflammation and dysfunction via interaction with miR-125b and p38 MAPK/NFkappaB. Int Immunopharmacol. 2018;55:69–76.
Article
CAS
PubMed
Google Scholar
Tani H, Okuda S, Nakamura K, Aoki M, Umemura T. Short-lived long non-coding RNAs as surrogate indicators for chemical exposure and LINC00152 and MALAT1 modulate their neighboring genes. PLoS One. 2017;12(7):e0181628.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee JE, Cho SG, Ko SG, Ahrmad SA, Puga A, Kim K. Regulation of a long noncoding RNA MALAT1 by aryl hydrocarbon receptor in pancreatic cancer cells and tissues. Biochem Biophys Res Commun. 2020;532(4):563–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartmann L, Bauer M, Bertram J, Gube M, Lenz K, Reisgen U, et al. Assessment of the biological effects of welding fumes emitted from metal inert gas welding processes of aluminium and zinc-plated materials in humans. Int J Hyg Environ Health. 2014;217(2–3):160–8.
Article
CAS
PubMed
Google Scholar
Dewald E, Gube M, Baumann R, Bertram J, Kossack V, Lenz K, et al. Assessment of the biological effects of welding fumes emitted from metal active gas and manual metal arc welding in humans. J Occup Environ Med. 2015;57(8):845–50.
Article
CAS
PubMed
Google Scholar
Brand P, Havlicek P, Steiners M, Holzinger K, Reisgen U, Kraus T, et al. Exposure of healthy subjects with emissions from a gas metal arc welding process: part 1--exposure technique and external exposure. Int Arch Occup Environ Health. 2013;86(1):25–30.
Article
CAS
PubMed
Google Scholar
Li HM, Ma XL, Li HG. Intriguing circles: conflicts and controversies in circular RNA research. Wiley Interdiscip Rev RNA. 2019;10(5):e1538.
Article
PubMed
Google Scholar
Cai W, Zhang Y, Su Z. ciRS-7 targeting miR-135a-5p promotes neuropathic pain in CCI rats via inflammation and autophagy. Gene. 2020;736:144386.
Article
CAS
PubMed
Google Scholar
Huang Q, Chi Y, Deng J, Liu Y, Lu Y, Chen J, et al. Fine particulate matter 2.5 exerted its toxicological effect by regulating a new layer, long non-coding RNA. Sci Rep. 2017;7(1):9392.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kong YG, Cui M, Chen SM, Xu Y, Xu Y, Tao ZZ. LncRNA-LINC00460 facilitates nasopharyngeal carcinoma tumorigenesis through sponging miR-149-5p to up-regulate IL6. Gene. 2018;639:77–84.
Article
CAS
PubMed
Google Scholar
Zhang DD, Wang WT, Xiong J, Xie XM, Cui SS, Zhao ZG, et al. Long noncoding RNA LINC00305 promotes inflammation by activating the AHRR-NF-kappaB pathway in human monocytes. Sci Rep. 2017;7:46204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conover WJ. Practical nonparametric statistics. 3rd ed. Hoboken: John Wiley and Sons - Scientific Publishers; 1999. p. 584.
Google Scholar
Cronholm P, Midander K, Karlsson HL, Elihn K, Wallinder IO, Moller L. Effect of sonication and serum proteins on copper release from copper nanoparticles and the toxicity towards lung epithelial cells. Nanotoxicology. 2011;5(2):269–81.
Article
CAS
PubMed
Google Scholar
Midander K, Cronholm P, Karlsson HL, Elihn K, Moller L, Leygraf C, et al. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small. 2009;5(3):389–99.
Article
CAS
PubMed
Google Scholar
Karlsson HL, Cronholm P, Hedberg Y, Tornberg M, De Battice L, Svedhem S, et al. Cell membrane damage and protein interaction induced by copper containing nanoparticles--importance of the metal release process. Toxicology. 2013;313(1):59–69.
Article
CAS
PubMed
Google Scholar
Baumann R, Gube M, Markert A, Davatgarbenam S, Kossack V, Gerhards B, et al. Systemic serum amyloid a as a biomarker for exposure to zinc and/or copper-containing metal fumes. J Expo Sci Environ Epidemiol. 2018;28(1):84–91.
Article
CAS
PubMed
Google Scholar
Li P, Shan JX, Chen XH, Zhang D, Su LP, Huang XY, et al. Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates prostaglandin E2/interleukin-6 signaling in the tumor microenvironment. Cell Res. 2015;25(5):588–603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakano Y, Isobe K, Kobayashi H, Kaburaki K, Isshiki T, Sakamoto S, et al. Clinical importance of long noncoding RNA LINC00460 expression in EGFRmutant lung adenocarcinoma. Int J Oncol. 2020;56(1):243–57.
CAS
PubMed
Google Scholar
Ouyang MZ, Zhou D, Zhu Y, Zhang M, Li L. The inhibition of MyD88 and TRIF signaling serve equivalent roles in attenuating myocardial deterioration due to acute severe inflammation. Int J Mol Med. 2018;41(1):399–408.
CAS
PubMed
Google Scholar
Zhu Y, Zhang M, Ouyang M, Zhou D, Li L. Roles of MyD88 and TRIF in cardiac dysfunction during sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2017;29(8):684–8.
PubMed
Google Scholar
Yang CA, Li JP, Yen JC, Lai IL, Ho YC, Chen YC, et al. lncRNA NTT/PBOV1 Axis promotes monocyte differentiation and is elevated in rheumatoid arthritis. Int J Mol Sci. 2018;19(9):2806.
Article
PubMed Central
CAS
Google Scholar
Zhang W, Zhang C, Hu C, Luo C, Zhong B, Yu X. Circular RNA-CDR1as acts as the sponge of microRNA-641 to promote osteoarthritis progression. J Inflamm (Lond). 2020;17:8.
Article
CAS
Google Scholar