Oberdörster G, Oberdörster E, Oberdörster J: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005, 113: 823–839.
Article
PubMed Central
PubMed
CAS
Google Scholar
Stone V, Nowack B, Baun A, van den Brink N, Kammer F, Dusinska M, Handy R, Hankin S, Hassellov M, Joner E, Fernandes TF: Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Sci Total Environ 2010, 408: 1745–1754. 10.1016/j.scitotenv.2009.10.035
Article
CAS
PubMed
Google Scholar
Oberdörster G: Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Int Med 2009, 267: 89–105.
Article
CAS
Google Scholar
Grieger KD, Hansen SF, Baun A: The known unknowns of nanomaterials: describing and characterizing uncertainty within environmental, health and safety risks. Nanotoxicology 2009, 3: 222–233. 10.1080/17435390902944069
Article
CAS
Google Scholar
Bergamaschi E: Occupational exposure to nanomaterials: present knowledge and future development. Nanotoxicology 2009, 3: 194–201. 10.1080/17435390903037038
Article
CAS
Google Scholar
Hristozov D, Malsch I: Hazards and risks of engineered nanoparticles for the environment and human health. Sustainability 2009, 1: 1161–1194. 10.3390/su1041161
Article
CAS
Google Scholar
Savolainen K, Alenius H, Norppa H, Pylkkanen L, Tuomi T, Kasper G: Risk assessment of engineered nanomaterials and nanotechnologies--a review. Toxicology 2010, 269: 92–104. 10.1016/j.tox.2010.01.013
Article
CAS
PubMed
Google Scholar
Nanoscale Science, Engineering and Technology (NSET) Subcommittee of the U.S. National Science and Technology Council (NSTC): Nanotechnology definition, National Science Foundation.[http://www.nsf.gov/crssprgm/nano/reports/omb_nifty50.jsp]
BSi (British Standards): Terminology for nanomaterials. Publicly available specification, PAS 2007, 136: 2007.
Google Scholar
The Royal Academy of Engineering, The Royal Society: Nanoscience and nanotechnologies: opportunities and uncertainties.2004. [http://www.nanotec.org.uk/report/Nano%20report%202004%20fin.pdf]
Google Scholar
Donaldson K, Stone V, MacNee W: The toxicology of ultrafine particles. Particulate Matter 1999, 115–129.
Google Scholar
Duffin R, Mills NL, Donaldson K: Nanoparticles-a thoracic toxicology perspective. Yonsei Med J 2007, 48: 561–572. 10.3349/ymj.2007.48.4.561
Article
PubMed Central
CAS
PubMed
Google Scholar
U.S. Environmental Protection Agency, Office of Research and Development: Air quality criteria for particulate matter. Washington, D.C; 1994.
Google Scholar
Cao G: Nanostructures & nanomaterials. Synthesis, properties & applications. London: Imperial College Press; 2004.
Book
Google Scholar
etc group (Action group on erosion, technology and concentration): Nanotech: Unpredictable and Un-Regulated.[http://www.etcgroup.org/en/node/96]
TA-SWISS, the Centre for Technology Assessment: Swiss survey reveals public have a fear of nanotechnology.2006. [http://www.azonano.com/News.asp?NewsID=3484]
Google Scholar
Singer N: New Products Bring Side Effect: Nanophobia. The New York Times - New York Edition 2008. E1, December 3 [http://www.nytimes.com/2008/12/04/fashion/04skin.html?pagewanted=1&_r=2]
Google Scholar
Alleyne R: Food manufacturers fear nanotechnology backlash. The Telegraph 2010. [http://www.telegraph.co.uk/health/healthnews/6946800/Food-manufacturers-fear-nanotechnology-backlash.html]
Google Scholar
Organic Consumers Association: Groups demand EPA stop sale of 200+ potentially dangerous nano-silver products.1195. [http://www.organicconsumers.org/articles/article_11955.cfm]
Google Scholar
Schulte P: Overview. In Presentation: Nanomaterials and worker health. Medical surveillance, exposure registries, and epidemiologic research. Keystone, CO; 2010
Environment Directorate, Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology, OECD:: List of manufactured nanomaterials and list of endpoints for phase one of the OECD testing programme. Series on the safety of manufactured nanomaterials 2008., 13: ENV/JM/MONO(2008)
Google Scholar
Kagan VE, Shi J, Feng W, Shvedova AA, Fadeel B: Fantastic voyage and opportunities of engineered nanomaterials: what are the potential risks of occupational exposures? J Occup Environ Med 2010, 52: 943–946. 10.1097/JOM.0b013e3181dc6c52
Article
CAS
PubMed
Google Scholar
Yokel RA, Florence RL, Unrine JM, Tseng MT, Graham UM, Wu P, Grulke EA, Sultana R, Hardas SS, Butterfield DA: Biodistribution and oxidative stress effects of a systemically-introduced commercial ceria engineered nanomaterial. Nanotoxicology 2009, 3: 234–248. 10.1080/17435390902974496
Article
CAS
Google Scholar
Warheit DB, Sayes CM, Reed KL: Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol 2009, 43: 7939–7945. 10.1021/es901453p
Article
CAS
PubMed
Google Scholar
Liu X, Guo L, Morris D, Kane AB, Hurt RH: Targeted removal of bioavailable metal as a detoxification strategy for carbon nanotubes. Carbon 2008, 46: 489–500. 10.1016/j.carbon.2007.12.018
Article
PubMed Central
CAS
PubMed
Google Scholar
O'Brien N, Cummins E: Recent developments in nanotechnology and risk assessment strategies for addressing public and environmental health concerns. Human Ecolog Risk Assess 2008, 14: 568–592.
Article
CAS
Google Scholar
Hansen SF, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F, Baun A: Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology 2008, 17: 438–447. 10.1007/s10646-008-0210-4
Article
CAS
PubMed
Google Scholar
Woodrow Wilson International Center for Scholars: The Project on Emerging Nanotechnologies.2011. [http://www.nanotechproject.org/inventories/]
Google Scholar
Schubauer-Berigan M, Dahm M, Yencken M: Engineered carbonaceous nanomaterials manufacturers in the United States: workforce size, characteristics and feasibility of epidemiologic studies. J Occup Environ Med 2011, in press.
Google Scholar
Dahm M, Yencken M, Schubauer-Berigan M: Exposure control strategies in the carbonaceous nanomaterial industry. J Occup Environ Med 2011, in press.
Google Scholar
Roco MC: International perspective on government nanotechnology funding in 2005. J Nanopart Res 2005, 7: 1–9. 10.1007/s11051-004-2336-5
Article
Google Scholar
Maynard AD: Nanotechnology: The Next Big Thing, or Much Ado about Nothing? Ann Occup Hyg 2006, 51: 1–12. 10.1093/annhyg/mel071
Article
PubMed
Google Scholar
President's Council of Advisors on Science and Technology: The National Nanotechnology Initiative at five years.Washington, D.C; 2005. [http://www.nano.gov/FINAL_PCAST_NANO_REPORT.pdf]
Google Scholar
National Nanotechnology Initiative Investments by Agency2009. [http://www.nano.gov/NNI_Investments_by_Agency_PCA_2001_2010.xls]
United Nations Educational, Scientific and Cultural Organization (UNESCO): The ethics and politics of nanotechnology.2006. [http://unesdoc.unesco.org/images/0014/001459/145951e.pdf]
Google Scholar
Druckman JN, Bolsen T: Framing, motivated reasoning, and opinions about emergent technologies. J Communication, in press.
European Commission: REACH and nanomaterials.2010. [http://ec.europa.eu/enterprise/sectors/chemicals/reach/nanomaterials/index_en.htm]
Google Scholar
Chen H, Roco MC, Li X, Lin Y: Trends in nanotechnology patents. Nat Nanotechnol 2008, 3: 123–125. 10.1038/nnano.2008.51
Article
CAS
PubMed
Google Scholar
NRC Committee on the Institutional Means for Assessment of Risks to Public Health, National Research Council: Risk Assessment in the Federal Government: Managing the Process. 1983, 191.
Google Scholar
Gioacchino MD, Verna N, Gornati R, Sabbioni E, Bernardini G: Metal nanoparticle health risk assessment. In Nanotoxicity. Edited by: Sahu SC, Casciano DA. West Sussex, United Kingdom: Wiley; 2009:519–541. full_text
Chapter
Google Scholar
Choi JY, Ramachandran G, Kandlikar M: The impact of toxicity testing costs on nanomaterial regulation. Environ Sci Technol 2009, 43: 3030–3034. 10.1021/es802388s
Article
CAS
PubMed
Google Scholar
Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, Elder A, Han X, Gelein R, Finkelstein J, Oberdörster G: Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A 2010, 73: 445–461. 10.1080/15287390903489422
Article
CAS
PubMed
Google Scholar
Jones CF, Grainger DW: In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 2009, 61: 438–456. 10.1016/j.addr.2009.03.005
Article
PubMed Central
CAS
PubMed
Google Scholar
Fischer HC, Chan WC: Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 2007, 18: 565–571. 10.1016/j.copbio.2007.11.008
Article
CAS
PubMed
Google Scholar
Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, et al.: Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part Fibre Toxicol 2005, 2: 35.
Article
CAS
Google Scholar
Shaw SY, Westly EC, Pittet MJ, Subramanian A, Schreiber SL, Weissleder R: Perturbational profiling of nanomaterial biologic activity. Proc Natl Acad Sci USA 2008, 105: 7387–7392. 10.1073/pnas.0802878105
Article
PubMed Central
CAS
PubMed
Google Scholar
Tervonen T, Linkov I, Figueira JR, Steevens J, Chappell M: Risk-based classification system of nanomaterials. J Nanopart Res 2009, 11: 757–766. 10.1007/s11051-008-9546-1
Article
CAS
Google Scholar
Zalk DM, Paik SY, Swuste P: Evaluating the Control Banding Nanotool: a qualitative risk assessment method for controlling nanoparticle exposure. J Nanopart Res 2009, 11: 1685–1704. 10.1007/s11051-009-9678-y
Article
CAS
Google Scholar
Saliner AG, Burello E, Worth A: Review of computational approaches for predicting the physicochemical and biological properties of nanoparticles. JRC Sci Tech Reports EUR 2008. 23974 - 2009
Google Scholar
Poater A, Gallegos Saliner A, Sola M, Cavallo L, Worth AP: Computational methods to predict the reactivity of nanoparticles through structure-property relationships. Expert Opin Drug Deliv 2010, 7: 295–305. 10.1517/17425240903508756
Article
CAS
PubMed
Google Scholar
Brouwer D: Exposure to manufactured nanoparticles in different workplaces. Toxicology 2010, 269: 120–127. 10.1016/j.tox.2009.11.017
Article
CAS
PubMed
Google Scholar
Gurr JR, Wang AS, Chen CH, Jan KY: Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 2005, 213: 66–73. 10.1016/j.tox.2005.05.007
Article
CAS
PubMed
Google Scholar
Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P, Biswas P: Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2008, 2: 33–42. 10.1080/17435390701882478
Article
PubMed Central
CAS
PubMed
Google Scholar
Hackley VA, Ferraris CF: The use of nomenclature in dispersion science and technology. National Institute of Standards and Technology, Special Publication 960–3, U.S. Government Printing Office; 2001:72.
Google Scholar
Seipenbusch M, Binder A, Kasper G: Temporal evolution of nanoparticle aerosols in workplace exposure. Ann Occup Hyg 2008, 52: 707–716. 10.1093/annhyg/men067
Article
CAS
PubMed
Google Scholar
Methner M, Hodson L, Geraci C: Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials--part A. J Occup Environ Hyg 2010, 7: 127–132. 10.1080/15459620903476355
Article
CAS
PubMed
Google Scholar
Pauluhn J: Multi-walled carbon nanotubes (Baytubes): approach for derivation of occupational exposure limit. Regul Toxicol Pharmacol 2010, 57: 78–89. 10.1016/j.yrtph.2009.12.012
Article
CAS
PubMed
Google Scholar
Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ: Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol 2005, 39: 9370–9376. 10.1021/es051043o
Article
CAS
PubMed
Google Scholar
WHO/EURO, Technical Committee for Monitoring and Evaluating Airborne MMMF: Reference methods for measuring airborne man-made mineral fibres (MMMF), WHO/EURO MMMF Reference Scheme, Monitoring concentration using a phase contrast optical microscope, Determining size using a scanning electron microscope. World Health Organization, Regional Office for Europe, Copenhagen; 1985:64.
Google Scholar
Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR: Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnol 2009, 4: 634–641. 10.1038/nnano.2009.242
Article
CAS
Google Scholar
Chithrani BD, Ghazani AA, Chan WC: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006, 6: 662–668. 10.1021/nl052396o
Article
CAS
PubMed
Google Scholar
Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M: Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 2009, 8: 543–557. 10.1038/nmat2442
Article
CAS
PubMed
Google Scholar
Raffa V, Vittorio O, Riggio C, Cuschieri A: Progress in nanotechnology for healthcare. Minim Invasive Ther Allied Technol 2010, 19: 127–135. 10.3109/13645706.2010.481095
Article
CAS
PubMed
Google Scholar
Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 2008, 105: 14265–14270. 10.1073/pnas.0805135105
Article
PubMed Central
CAS
PubMed
Google Scholar
Belgorodsky B, Drug E, Fadeev L, Hendler N, Mentovich E, Gozin M: Mucin complexes of nanomaterials: first biochemical encounter. Small 2010, 6: 262–269. 10.1002/smll.200900637
Article
CAS
PubMed
Google Scholar
Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF: Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 2009, 20: 455101/1–455101/9.
CAS
Google Scholar
Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson KS, Roel , Stone V, Kreyling W, Lademann J, Krutmann J, et al.: The potential risks of nanomaterials: A review carried out for ECETOC. Part Fibre Toxicol 2006, 3: 35. 10.1186/1743-8977-3-11
Article
CAS
Google Scholar
Liu X, Tao H, Yang K, Zhang S, Lee ST, Liu Z: Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials 2010, 32: 144–151. 10.1016/j.biomaterials.2010.08.096
Article
CAS
Google Scholar
Huang C, Neoh KG, Wang L, Kang ET, Shuter B: Magnetic nanoparticles for magnetic resonance imaging: modulation of macrophage uptake by controlled PEGylation of the surface coating. J Mat Chem 2010, 39: 8512–8520. 10.1039/c0jm01526a
Article
CAS
Google Scholar
Fernández-Argüelles MT, Yakovlev A, Sperling RA, Luccardini C, Gaillard S, Medel AS, Mallet JM, Brochon JC, Feltz A, Oheim M, Parak WJ: Synthesis and characterization of polymer-coated quantum dots with integrated acceptor dyes as FRET-based nanoprobes. Nano Lett 2007, 7: 2613–2617.
Article
PubMed
CAS
Google Scholar
Stuart D, Lobenberg R, Ku T, Azarmi S, Ely L, Roa W, Prenner EJ: Biophysical investigation of nanoparticle interactions with lung surfactant model systems. J Biomed Nanotechnol 2006, 2: 245–252. 10.1166/jbn.2006.031
Article
CAS
Google Scholar
Harishchandra RK, Saleem M, Galla HJ: Nanoparticle interaction with model lung surfactant monolayers. J Royal Soc, Interface 2010, 7: S15-S26. 10.1098/rsif.2009.0329.focus
Article
CAS
Google Scholar
ICRP: International Commission on Radiological Protection. Human respiratory tract model for radiological protection. Ann ICRP 1994, 120. Publication No. 66
Google Scholar
Segal RA, Martonen TB, Kim CS, Shearer M: Computer simulations of particle deposition in the lungs of chronic obstructive pulmonary disease patients. Inhal Toxicol 2002, 14: 705–720. 10.1080/08958370290084593
Article
CAS
PubMed
Google Scholar
Sturm R, Hofmann W: Stochastic simulation of alveolar particle deposition in lungs affected by different types of emphysema. J Aerosol Med 2004, 17: 357–372. 10.1089/jam.2004.17.357
Article
CAS
PubMed
Google Scholar
Bodian D, Howe HA: Experimental studies on intraneuronal spread of poliomyelitis virus. Bull Johns Hopkins Hosp 1941, 69: 248–267.
Google Scholar
Bodian D, Howe HA: The rate of progression of poliomyelitis virus in nerves. Bull Johns Hopkins Hosp 1941, 69: 79–85.
Google Scholar
De Lorenzo A: The olfactory neuron and the blood-brain barrier. In Taste and smell in vertebrates. Edited by: Wolstenholme G, Knight J. London: Churchhill; 1970:151–176.
Google Scholar
Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C: Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 2004, 16: 437–445.
Article
PubMed
CAS
Google Scholar
Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J, Oberdörster G: Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 2006, 114: 1172–1178. 10.1289/ehp.9030
Article
PubMed Central
CAS
PubMed
Google Scholar
Tan MH, Commens CA, Burnett L, Snitch PJ: A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australasian J Dermatol 1996, 37: 185–187. 10.1111/j.1440-0960.1996.tb01050.x
Article
CAS
Google Scholar
Filipe P, Silva JN, Silva R, Cirne de Castro JL, Marques Gomes M, Alves LC, Santus R, Pinheiro T: Stratum corneum is an effective barrier to TiO2and ZnO nanoparticle percutaneous absorption. Skin Pharmacol Physiol 2009, 22: 266–275. 10.1159/000235554
Article
CAS
PubMed
Google Scholar
Gamer AO, Leibold E, van Ravenzwaay B: The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicology in Vitro 2006, 20: 301–307. 10.1016/j.tiv.2005.08.008
Article
CAS
PubMed
Google Scholar
Pflucker F, Wendel V, Hohenberg H, Gartner E, Will T, Pfeiffer S, Wepf R, Gers-Barlag H: The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharmacol Appl Skin Physiol 2001, 14(Suppl 1):92–97.
CAS
PubMed
Google Scholar
Pinheiro T, Pallon J, Alves LC, Veríssimo A, Filipe P, Silva JN, Silva R: The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across skin. Nucl Instrument Meth Physics Res B 260: 119–123. 10.1016/j.nimb.2007.02.014
Schulz J, Hohenberg H, Pflucker F, Gartner E, Will T, Pfeiffer S, Wepf R, Wendel V, Gers-Barlag H, Wittern KP: Distribution of sunscreens on skin. Adv Drug Deliv Rev 2002, 54(Suppl 1):S157–163. 10.1016/S0169-409X(02)00120-5
Article
CAS
PubMed
Google Scholar
Popov A, Zhao X, Zvyagin A, Lademann J, Roberts M, Sanchez W, Priezzhev A, Myllylae R: ZnO and TiO2particles: a study on nanosafety and photoprotection. Proc SPIE 2010, 7715: 77153G/1–77153G/7.
Article
CAS
Google Scholar
Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P: Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 2007, 20: 148–154. 10.1159/000098701
Article
CAS
PubMed
Google Scholar
Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, Lopez-Quintela MA: Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 2007, 127: 1701–1712.
Article
CAS
PubMed
Google Scholar
Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W: Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 1999, 12: 247–256.
Article
CAS
PubMed
Google Scholar
Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, Weiss B, Schaefer UF, Lehr CM, Wepf R, Sterry W: Nanoparticles--an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm 2007, 66: 159–164. 10.1016/j.ejpb.2006.10.019
Article
CAS
PubMed
Google Scholar
Mortensen LJ, Oberdörster G, Pentland AP, Delouise LA: In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett 2008, 8: 2779–2787. 10.1021/nl801323y
Article
PubMed Central
CAS
PubMed
Google Scholar
Gopee NV, Roberts DW, Webb P, Cozart CR, Siitonen PH, Warbritton AR, Yu WW, Colvin VL, Walker NJ, Howard PC: Migration of intradermally injected quantum dots to sentinel organs in mice. Toxicol Sci 2007, 98: 249–257. 10.1093/toxsci/kfm074
Article
PubMed Central
CAS
PubMed
Google Scholar
Wakefield G, Lipscomb S, Holland E, Knowland J: The effects of manganese doping on UVA absorption and free radical generation of micronised titanium dioxide and its consequences for the photostability of UVA absorbing organic sunscreen components. Photochem Photobiol Sci 2004, 3: 648–652. 10.1039/b403697b
Article
CAS
PubMed
Google Scholar
Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, Adkins EJ: Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 2003, 111: 1202–1208. 10.1289/ehp.5999
Article
PubMed Central
CAS
PubMed
Google Scholar
Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA: Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett 2007, 7: 155–160. 10.1021/nl062464m
Article
CAS
PubMed
Google Scholar
Sadrieh N, Wokovich AM, Gopee NV, Zheng J, Haines D, Parmiter D, Siitonen PH, Cozart CR, Patri AK, McNeil SE, et al.: Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano- and submicron-size TiO2particles. Toxicol Sci 2010, 115: 156–166. 10.1093/toxsci/kfq041
Article
PubMed Central
CAS
PubMed
Google Scholar
Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, Castranova V, Shvedova AA: Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 2009, 257: 161–171. 10.1016/j.tox.2008.12.023
Article
CAS
PubMed
Google Scholar
Xia XR, Monteiro-Riviere NA, Riviere JE: Skin penetration and kinetics of pristine fullerenes (C60) topically exposed in industrial organic solvents. Toxicol Appl Pharmacol 2010, 242: 29–37. 10.1016/j.taap.2009.09.011
Article
CAS
PubMed
Google Scholar
Hoet PH, Bruske-Hohlfeld I, Salata OV: Nanoparticles - known and unknown health risks. J Nanobiotechnol 2004, 2: 12. 10.1186/1477-3155-2-12
Article
CAS
Google Scholar
Nwokolo CU, Lewin JF, Hudson M, Pounder RE: Transmucosal penetration of bismuth particles in the human stomach. Gastroenterol 1992, 102: 163–167.
CAS
Google Scholar
Hillery AM, Jani PU, Florence AT: Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles. J Drug Target 1994, 2: 151–156. 10.3109/10611869409015904
Article
CAS
PubMed
Google Scholar
Jani PU, Florence AT, McCarthy DE: Further histological evidence of the gastrointestinal absorption of polystyrene nanospheres in the rat. Int J Pharmaceut 1992, 84: 245–252. 10.1016/0378-5173(92)90162-U
Article
CAS
Google Scholar
Jani P, Halbert GW, Langridge J, Florence AT: Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 1990, 42: 821–826.
Article
CAS
PubMed
Google Scholar
Jani PU, Nomura T, Yamashita F, Takakura Y, Florence AT, Hashida M: Biliary excretion of polystyrene microspheres with covalently linked FITC fluorescence after oral and parenteral administration to male Wistar rats. J Drug Target 1996, 4: 87–93. 10.3109/10611869609046266
Article
CAS
PubMed
Google Scholar
Hillyer JF, Albrecht RM: Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. J Pharm Sci 2001, 90: 1927–1936. 10.1002/jps.1143
Article
CAS
PubMed
Google Scholar
Hendley JO, Wenzel RP, Gwaltney JM: Transmission of rhinovirus colds by self-inoculation. NEJM 1973, 288: 1361–1364. 10.1056/NEJM197306282882601
Article
CAS
PubMed
Google Scholar
Zimmer A, Kreuter J, Robinson JR: Studies on the transport pathway of PBCA nanoparticles in ocular tissues. J Microencapsul 1991, 8: 497–504. 10.3109/02652049109021873
Article
CAS
PubMed
Google Scholar
Slovic P: Perception of risk. Science 1987, 236: 280–285. 10.1126/science.3563507
Article
CAS
PubMed
Google Scholar
MacGregor D, Slovic P, Malmfors T: "How exposed is exposed enough?" Lay inferences about chemical exposure. Risk Analysis 1999, 19: 649–659.
CAS
PubMed
Google Scholar
Madl AK, Pinkerton KE: Health effects of inhaled engineered and incidental nanoparticles. Crit Rev Toxicol 2009, 39: 629–658. 10.1080/10408440903133788
Article
CAS
PubMed
Google Scholar
Priester JH, Stoimenov PK, Mielke RE, Webb SM, Ehrhardt C, Zhang JP, Stucky GD, Holden PA: Effects of soluble cadmium salts versus CdSe quantum dots on the growth of planktonic Pseudomonas aeruginosa . Environ Sci Technol 2009, 43: 2589–2594. 10.1021/es802806n
Article
CAS
PubMed
Google Scholar
Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE: Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2: 2121–2134. 10.1021/nn800511k
Article
PubMed Central
CAS
PubMed
Google Scholar
Wong SW, Leung PT, Djurisic AB, Leung KM: Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 2010, 396: 609–618. 10.1007/s00216-009-3249-z
Article
CAS
PubMed
Google Scholar
Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, Levsen : Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol 1995, 7: 533–556. 10.3109/08958379509015211
Article
CAS
Google Scholar
Lam CW, James JT, McCluskey R, Hunter RL: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2004, 77: 126–134. 10.1093/toxsci/kfg243
Article
CAS
PubMed
Google Scholar
Kelly RJ: Occupational medicine implications of engineered nanoscale particulate matter. J Chem Health Safety 2009, 16: 24–39. 10.1016/j.jchas.2008.03.012
Article
CAS
Google Scholar
Erdely A, Hulderman T, Salmen R, Liston A, Zeidler-Erdely PC, Schwegler-Berry D, Castranova V, Koyama S, Kim YA, Endo M, Simeonova PP: Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers. Nano Lett 2009, 9: 36–43. 10.1021/nl801828z
Article
CAS
PubMed
Google Scholar
Ryman-Rasmussen JP, Tewksbury EW, Moss OR, Cesta MF, Wong BA, Bonner JC: Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am J Respir Cell Mol Biol 2009, 40: 349–358. 10.1165/rcmb.2008-0276OC
Article
PubMed Central
CAS
PubMed
Google Scholar
Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalan J, Savolainen K, Norppa H: Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro . Toxicol Lett 2009, 186: 166–173. 10.1016/j.toxlet.2008.11.019
Article
CAS
PubMed
Google Scholar
Li JG, Li WX, Xu JY, Cai XQ, Liu RL, Li YJ, Zhao QF, Li QN: Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 2007, 22: 415–421. 10.1002/tox.20270
Article
CAS
PubMed
Google Scholar
Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, Donaldson K: The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 2007, 64: 609–615. 10.1136/oem.2005.024802
Article
PubMed Central
CAS
PubMed
Google Scholar
Totsuka Y, Higuchi T, Imai T, Nishikawa A, Nohmi T, Kato T, Masuda S, Kinae N, Hiyoshi K, Ogo S, et al.: Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems. Part Fibre Toxicol 2009, 6: 23. 10.1186/1743-8977-6-23
Article
PubMed Central
PubMed
CAS
Google Scholar
Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J: Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 2008, 33: 105–116. 10.2131/jts.33.105
Article
CAS
PubMed
Google Scholar
Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 2008, 3: 423–428. 10.1038/nnano.2008.111
Article
CAS
PubMed
Google Scholar
Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D: Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol Sci 2009, 110: 442–448. 10.1093/toxsci/kfp100
Article
CAS
PubMed
Google Scholar
Park EJ, Choi J, Park YK, Park K: Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 2008, 245: 90–100. 10.1016/j.tox.2007.12.022
Article
CAS
PubMed
Google Scholar
Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K: Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 2008, 180: 222–229. 10.1016/j.toxlet.2008.06.869
Article
CAS
PubMed
Google Scholar
Lin W, Huang YW, Zhou XD, Ma Y: Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol 2006, 25: 451–457. 10.1080/10915810600959543
Article
CAS
PubMed
Google Scholar
Kim IS, Baek M, Choi SJ: Comparative cytotoxicity of Al2O3, CeO2, TiO2and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol 2010, 10: 3453–3458. 10.1166/jnn.2010.2340
Article
CAS
PubMed
Google Scholar
Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B: Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol 2006, 40: 4346–4352. 10.1021/es060589n
Article
CAS
PubMed
Google Scholar
Hardas SS, Butterfield DA, Sultana R, Tseng MT, Dan M, Florence RL, Unrine JM, Graham UM, Wu P, Grulke EA, Yokel RA: Brain distribution and toxicological evaluation of a systemically delivered engineered nanoscale ceria. Toxicol Sci 2010, 116: 562–576. 10.1093/toxsci/kfq137
Article
CAS
PubMed
Google Scholar
Samberg ME, Oldenburg SJ, Monteiro-Riviere NA: Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 2010, 118: 407–413. 10.1289/ehp.0901398
Article
PubMed Central
CAS
PubMed
Google Scholar
Mohan N, Chen CS, Hsieh HH, Wu YC, Chang HC: In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett 2010, 10: 3692–3699. 10.1021/nl1021909
Article
CAS
PubMed
Google Scholar
Truong L, Harper SL, Tanguay RL: Evaluation of embryotoxicity using the zebrafish model. Methods Mol Biol 691: 271–279. full_text
Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY: Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 2009, 5: 1897–1910. 10.1002/smll.200801716
Article
CAS
PubMed
Google Scholar
Wittmaack K: In search of the most relevant parameter for quantifying lung inflammatory response to nanoparticle exposure: particle number, surface area, or what? Environ Health Perspect 2007, 115: 187–194. 10.1289/ehp.9254
Article
PubMed Central
CAS
PubMed
Google Scholar
Duffin R, Tran L, Brown D, Stone V, Donaldson K: Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 2007, 19: 849–856. 10.1080/08958370701479323
Article
CAS
PubMed
Google Scholar
Waters KM, Masiello LM, Zangar RC, Tarasevich BJ, Karin NJ, Quesenberry RD, Bandyopadhyay S, Teeguarden JG, Pounds JG, Thrall BD: Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci 2009, 107: 553–569. 10.1093/toxsci/kfn250
Article
PubMed Central
CAS
PubMed
Google Scholar
Ma L, Liu J, Li N, Wang J, Duan Y, Yan J, Liu H, Wang H, Hong F: Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2delivered to the abdominal cavity. Biomaterials 2010, 31: 99–105. 10.1016/j.biomaterials.2009.09.028
Article
CAS
PubMed
Google Scholar
Pauluhn J: Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 2010, 113: 226–242. 10.1093/toxsci/kfp247
Article
CAS
PubMed
Google Scholar
Dutta D, Sundaram SK, Teeguarden JG, Riley BJ, Fifield LS, Jacobs JM, Addleman SR, Kaysen GA, Moudgil BM, Weber TJ: Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 2007, 100: 303–315. 10.1093/toxsci/kfm217
Article
CAS
PubMed
Google Scholar
Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D: Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 2005, 207: 221–231.
Article
CAS
PubMed
Google Scholar
Tsai SJ, Hofmann M, Hallock M, Ada E, Kong J, Ellenbecker M: Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition. Environ Sci Technol 2009, 43: 6017–6023. 10.1021/es900486y
Article
CAS
PubMed
Google Scholar
Bailey MR, Fry FA, James AC: The long-term clearance kinetics of insoluble particles from the human lung. Ann Occup Hyg 1982, 26: 273–290. 10.1093/annhyg/26.2.273
Article
CAS
PubMed
Google Scholar
O'Neill LA: Immunology. How frustration leads to inflammation. Science 2008, 320: 619–620.
Article
PubMed
Google Scholar
Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A: Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 2009, 6: 35. 10.1186/1743-8977-6-35
Article
PubMed Central
PubMed
CAS
Google Scholar
Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME, Bonner JC: Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol 2009, 4: 747–751. 10.1038/nnano.2009.305
Article
PubMed Central
CAS
PubMed
Google Scholar
Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berry D, Friend S, et al.: Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 2009, 269: 136–147. 10.1016/j.tox.2009.10.017
Article
PubMed
CAS
Google Scholar
Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C: Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 2002, 65: 1531–1543.
Article
PubMed
CAS
Google Scholar
Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A: Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 2002, 65: 1513–1530. 10.1080/00984100290071649
Article
CAS
PubMed
Google Scholar
Tsuchiya T, Oguri I, Yamakoshi YN, Miyata N: Novel harmful effects of [60]fullerene on mouse embryos in vitro and in vivo. FEBS Lett 1996, 393: 139–145. 10.1016/0014-5793(96)00812-5
Article
PubMed
Google Scholar
Takeda K, Suzuki Ki, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, Oshio S, Nihei Y, Ihara T, Sugamata M: Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci 2009, 55: 95–102. 10.1248/jhs.55.95
Article
CAS
Google Scholar
Sakamoto Y, Nakae D, Fukumori N, Tayama K, Maekawa A, Imai K, Hirose A, Nishimura T, Ohashi N, Ogata A: Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci 2009, 34: 65–76. 10.2131/jts.34.65
Article
CAS
PubMed
Google Scholar
Chen J, Tan M, Nemmar A, Song W, Dong M, Zhang G, Li Y: Quantification of extrapulmonary translocation of intratracheal-instilled particles in vivo in rats: effect of lipopolysaccharide. Toxicology 2006, 222: 195–201. 10.1016/j.tox.2006.02.016
Article
CAS
PubMed
Google Scholar
Biozzi G, Benacerraf B, Halpern BN: Quantitative study of the granulopectic activity of the reticulo-endothelial system. II. A study of the kinetics of the R. E. S. in relation to the dose of carbon injected; relationship between the weight of the organs and their activity. Br J Exp Pathol 1953, 34: 441–457.
PubMed Central
CAS
PubMed
Google Scholar
Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NW, Chu P, Liu Z, Sun X, Dai H, Gambhir SS: A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 2008, 3: 216–221. 10.1038/nnano.2008.68
Article
CAS
PubMed
Google Scholar
Sadauskas E, Jacobsen NR, Danscher G, Stoltenberg M, Vogel U, Larsen A, Kreyling W, Wallin H: Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation. Chem Cent J 2009, 3: 16. 10.1186/1752-153X-3-16
Article
PubMed Central
PubMed
CAS
Google Scholar
Yokel RA, Florence RMD, Unrine J, Tseng MT, Graham UM, Sultana R, Hardas SBDA, Wu P, Grulke EA: Safety/toxicity assessment of ceria (a model engineered NP) to the brain. In Presentation: Interagency Nanotechnology Implications Grantees Workshop-EPA, NSF, NIEHS, NIOSH, and DOE; November 9–11. Las Vegas, NV; 2009.
Google Scholar
Symens N, Walzack R, Demeester J, Mattaj I, De Smedt SC, Remaut K: Nuclear inclusion of inert and chromatin-targeted polystyrene spheres and plasmid DNA containing nanoparticles. J Control Release 2010, 148: e96-e98. 10.1016/j.jconrel.2010.07.071
Article
CAS
PubMed
Google Scholar
Bhojani MS, Van Dort M, Rehemtulla A, Ross BD: Targeted imaging and therapy of brain cancer using theranostic nanoparticles. Mol Pharm 2010, 7: 1921–1929. 10.1021/mp100298r
Article
PubMed Central
CAS
PubMed
Google Scholar
Wong HL, Chattopadhyay N, Wu XY, Bendayan R: Nanotechnology applications for improved delivery of antiretroviral drugs to the brain. Adv Drug Deliv Rev 2009, 62: 503–517. 10.1016/j.addr.2009.11.020
Article
PubMed
CAS
Google Scholar
Yang H: Nanoparticle-mediated brain-specific drug delivery, imaging, and diagnosis. Pharm Res 2010, 27: 1759–1771. 10.1007/s11095-010-0141-7
Article
PubMed Central
CAS
PubMed
Google Scholar
Silva GA: Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann N Y Acad Sci 2010, 1199: 221–230. 10.1111/j.1749-6632.2009.05361.x
Article
CAS
PubMed
Google Scholar
Lockman PR, Koziara JM, Mumper RJ, Allen DD: Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Targeting 2004, 12: 635–641. 10.1080/10611860400015936
Article
CAS
Google Scholar
European Parliament, Policy Department Economic and Scientific Policy: Nanomaterials in consumer products, Availability on the European market and adequacy of the regulatory framework.2006. [http://www.europarl.europa.eu/comparl/envi/pdf/externalexpertise/nanomaterials_in_consumer_products.pdf]
Google Scholar
Jani P, Halbert GW, Langridge J, Florence AT: The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol 1989, 41: 809–812.
Article
CAS
PubMed
Google Scholar
Qu GB, Yuhong , Zhang , Yi , Jia , Qing , Zhang , Weidong , Yan , Bing : The effect of multiwalled carbon nanotube agglomeration on their accumulation in and damage to organs in mice. Carbon 2009, 47: 2060–2069. 10.1016/j.carbon.2009.03.056
Article
CAS
Google Scholar
Dan M, Tseng MT, Florence RL, Tiu G, Unrine JM, Graham UM, Sultana R, Hardas SS, Helm M, Butterfield DA, et al.: Short- and long-term biodistribution and oxidative stress effects of a systemically-introduced 5 nm ceria engineered nanomaterial. In Presentation: 49th Annual Meeting of the Society of Toxicology; March 7–11. Salt Lake City, UT; 2010. Program # 277
Google Scholar
Yang K, Xing B: Adsorption of fulvic acid by carbon nanotubes from water. Environment Pollution 2009, 157: 1095–1100. 10.1016/j.envpol.2008.11.007
Article
CAS
Google Scholar
Horie M, Nishio K, Fujita K, Endoh S, Miyauchi A, Saito Y, Iwahashi H, Yamamoto K, Murayama H, Nakano H, et al.: Protein adsorption of ultrafine metal oxide and its Influence on cytotoxicity toward cultured cells. Chem Res Toxicol 2009, 22: 543–553. 10.1021/tx800289z
Article
CAS
PubMed
Google Scholar
Barber DS, Stevens S, Wasdo S, Feswick A, Carpinone P, Denslow N, Powers K, Roberts SM: Nanoparticle size and composition affect adsorption of human plasma proteins. In Presentation: 48th Annual Meeting Society of Toxicology Meeting. Baltimore, MD; 2009. Program # 860
Google Scholar
Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA: What the cell "sees" in bionanoscience. J Am Chem Soc 2010, 132: 5761–5768. 10.1021/ja910675v
Article
CAS
PubMed
Google Scholar
Reddy AR, Krishna DR, Reddy YN, Himabindu V: Translocation and extra pulmonary toxicities of multi wall carbon nanotubes in rats. Toxicol Mech Meth 2010, 20: 267–272. 10.3109/15376516.2010.484077
Article
CAS
Google Scholar
Schmid K, Riediker M: Use of nanoparticles in Swiss industry: A targeted survey. Environ Sci Technol 2008, 42: 2253–2260. 10.1021/es071818o
Article
CAS
PubMed
Google Scholar
Shi JP, Khan AA, Harrison RM: Measurements of ultrafine particle concentration and size distribution in the urban atmosphere. Sci Total Environ 1999, 235: 51–64. 10.1016/S0048-9697(99)00189-8
Article
CAS
Google Scholar
Moroni B, Viti C: Grain size, chemistry, and structure of fine and ultrafine particles in stainless steel welding fumes. J Aerosol Sci 2009, 40: 938–949. 10.1016/j.jaerosci.2009.08.004
Article
CAS
Google Scholar
Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V: Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 2004, 67: 87–107. 10.1080/15287390490253688
Article
CAS
PubMed
Google Scholar
Methner M, Hodson L, Dames A, Geraci C: Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials--Part B: Results from 12 field studies. J Occup Environ Hyg 2010, 7: 163–176. 10.1080/15459620903508066
Article
CAS
PubMed
Google Scholar
Methner MM, Birch ME, Evans DE, Ku BK, Crouch K, Hoover MD: Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J Occup Environ Hyg 2007, 4: D125-D130. 10.1080/15459620701683871
Article
PubMed
Google Scholar
Bello D, Wardle BL, Yamamoto N, Guzman deVilloria R, Garcia EJ, Hart AJ, Ahn K, Ellenbecker MJ, Hallock M: Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanopart Res 2009, 11: 231–249. 10.1007/s11051-008-9499-4
Article
CAS
Google Scholar
Tsai S-J, Ashter A, Ada E, Mead JL, Barry CF, Ellenbecker MJ: Airborne nanoparticle release associated with the compounding of nanocomposites using nanoalumina as fibers. Aerosol Air Quality Res 2008, 8: 160–177.
CAS
Google Scholar
Tsai S-J, Ashter A, Ada E, Mead JL, Barry CF, Ellenbecker MJ: Control of airborne nanoparticles release during compounding of polymer nanocomposites. NANO 2008, 3: 301–309. 10.1142/S179329200800112X
Article
CAS
Google Scholar
Song Y, Li X, Du X: Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J 2009, 34: 559–567. 10.1183/09031936.00178308
Article
CAS
PubMed
Google Scholar
Anon: Recommended reading. Lack of progress on nanotoxicology has been highlighted by a tragic accident in China. Nature Nanotechnology 2009, 4: 533. 10.1038/nnano.2009.244
Article
CAS
Google Scholar
Borm P, Castranova V: Toxicology of Nanomaterials: Permanent interactive learning. Part Fibre Toxicol 2009, 6: 3. 10.1186/1743-8977-6-28
Article
CAS
Google Scholar
Hiroyuki T: Risk assessment studies of nanomaterials in Japan and other countries. Asian Pacific J Cancer Prevent 2010, 11: 13–14.
Google Scholar
Liao C-M, Chiang Y-H, Chio C-P: Assessing the airborne titanium dioxide nanoparticle-related exposure hazard at workplace. J Hazardous Mat 2009, 162: 57–65. 10.1016/j.jhazmat.2008.05.020
Article
CAS
Google Scholar
Stone V, Aitken R, Aschberger K, Baun A, Christensen F, Fernandes T, Hansen SF, Hartmann NB, Hutchison G, Johnston H, et al.: Engineered nanoparticles: Review of health and environmental safety (ENRHES).Edinburgh: Edinburgh Napier University; 2010. [http://ihcp.jrc.ec.europa.eu/whats-new/enhres-final-report]
Google Scholar
Tyshenko MG, Krewski D: A risk management framework for the regulation of nanomaterials. Int J Nanotechnol 2008, 5: 143–160. 10.1504/IJNT.2008.016553
Article
CAS
Google Scholar
Balbus JM, Florini K, Denison RA, Walsh SA: Protecting workers and the environment: An environmental NGO's perspective on nanotechnology. J Nanopart Res 2007, 9: 11–22. 10.1007/s11051-006-9173-7
Article
Google Scholar
Murr LE, Soto KF, Esquivel EV, Bang JJ, Guerrero PA, Lopez DA, Ramirez DA: Carbon nanotubes and other fullerene-related nanocrystals in the environment: a TEM study. JOM 2004, 5: 28–31. 10.1007/s11837-004-0106-6
Article
Google Scholar
NIOSH: Approches to safe nanotechnology. Managing the health and safety concerns associated with engineered nanomaterials.NIOHS, CDCP, DHHS; DHHS (NIOSH) Publication 2009–125; 2009. [http://www.cdc.gov/niosh/topics/nanotech/safenano/]
Google Scholar
Trout DB, Schulte PA: Medical surveillance, exposure registries, and epidemiologic research for workers exposed to nanomaterials. Toxicology 2010, 269: 128–135. 10.1016/j.tox.2009.12.006
Article
CAS
PubMed
Google Scholar
Schmid K, Danuser B, Riediker M: Nanoparticle usage and protection measures in the manufacturing industry--a representative survey. J Occup Environ Hyg 2010, 7: 224–232. 10.1080/15459621003609127
Article
PubMed
Google Scholar
Riediker M: Lessons from Nanoimpact.net conference. In Presentation: Nanomaterials and worker health. Medical surveillance, exposure registries, and epidemiologic research. Keystone, CO; 2010.
Google Scholar
Conti JA, Killpack K, Gerritzen G, Huang L, Mircheva M, Delmas M, Harthorn BH, Appelbaum RP, Holden PA: Health and safety practices in the nanomaterials workplace: results from an international survey. Environ Sci Technol 2008, 42: 3155–3162. 10.1021/es702158q
Article
CAS
PubMed
Google Scholar
Harthorn B: Characterization of the nanotechnology workforce. In Presentation: Nanomaterials and worker health. Medical surveillance, exposure registries, and epidemiologic research. Keystone, CO; 2010.
Google Scholar
Yeganeh B, Kull CM, Hull MS, Marr LC: Characterization of airborne particles during production of carbonaceous nanomaterials. Environ Sci Technol 2008, 42: 4600–4606. 10.1021/es703043c
Article
CAS
PubMed
Google Scholar
Tsai S-J, Ada E, Isaacs JA, Ellenbecker MJ: Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res 2009, 11: 147–161. 10.1007/s11051-008-9459-z
Article
CAS
Google Scholar
Tsai SJ, Huang RF, Ellenbecker MJ: Airborne nanoparticle exposures while using constant-flow, constant-velocity, and air-curtain-isolated fume hoods. Ann Occup Hyg 2010, 54: 78–87. 10.1093/annhyg/mep074
Article
CAS
PubMed
Google Scholar
Ellenbecker MJS, Tsai S: Interim Best Practices for Working with Nanoparticles. Version 1: Center for High-rate Nanomanufacturing; 2008.
Google Scholar
Plitzko S: Workplace exposure to engineered nanoparticles. Inhal Toxicol 2009, 21(Suppl 1):25–29. 10.1080/08958370902962317
Article
CAS
PubMed
Google Scholar
Hämeri K, Laehde T, Hussein T, Koivisto J, Savolainen K: Facing the key workplace challenge: Assessing and preventing exposure to nanoparticles at source. Inhal Toxicol 2009, 21: 17–24.
Article
PubMed
CAS
Google Scholar
Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, Lee SB, Ji JH, Cho MH, Yu IJ: Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 2008, 20: 741–749. 10.1080/08958370801942238
Article
PubMed
CAS
Google Scholar
Lee M-H, McClellan WJ, Candela J, Andrews D, Biswas P: Reduction of nanoparticle exposure to welding aerosols by modification of the ventilation system in a workplace. J Nanopart Res 2007, 9: 127–136. 10.1007/s11051-006-9181-7
Article
CAS
Google Scholar
Methner MM: Engineering case reports. Effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations. J Occup Environ Hyg 2008, 5: D63–69.
Article
PubMed
Google Scholar
Cena LG, Peters TM: Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites. J Occup Environ Hygiene 2010, 8(2):86–92. 10.1080/15459624.2011.545943
Article
CAS
Google Scholar
Schulte P, Geraci C, Zumwalde R, Hoover M, Kuempel E: Occupational risk management of engineered nanoparticles. J Occup Environ Hyg 2008, 5: 239–249. 10.1080/15459620801907840
Article
CAS
PubMed
Google Scholar
Huang S-H, Chen C-W, Chang C-P, Lai C-Y, Chen C-C: Penetration of 4.5 nm to 10 μm aerosol particles through fibrous filters. J Aerosol Sci 2007, 38: 719–727. 10.1016/j.jaerosci.2007.05.007
Article
CAS
Google Scholar
Golanski L, Guiot A, Rouillon F, Pocachard J, Tardif F: Experimental evaluation of personal protection devices against graphite nanoaerosols: fibrous filter media, masks, protective clothing, and gloves. Hum Exp Toxicol 2009, 28: 353–359. 10.1177/0960327109105157
Article
CAS
PubMed
Google Scholar
Eninger RM, Honda T, Adhikari A, Heinonen-Tanski H, Reponen T, Grinshpun SA: Filter performance of n99 and n95 facepiece respirators against viruses and ultrafine particles. Ann Occup Hyg 2008, 52: 385–396. 10.1093/annhyg/men019
Article
CAS
PubMed
Google Scholar
Halford B: How well do gloves and respirators block nanoparticles? C & EN 2006, 84: 14.
Google Scholar
Richardson AW, Eshbaugh JP, Hofacre KC: Respirator filter efficiency testing against particulate and biological aerosols under moderate to high flow rates.Battelle Memorial Institute, Columbus, Ohio: Edgewood Chemical Biological Center, U.S. Army Research, Development and Engineering Command; ECBC-CR-085; 2006. [http://www.cdc.gov/niosh/npptl/researchprojects/pdfs/CR-085Gardner.pdf]
Google Scholar
Huang S-H, Huang Y, Chen C-W, Chang C-P: Nanoparticles penetration through protective clothing materials. In 3rd International Symposium on Nanotechnology, Occupational and Environmental Health. Taipei, Taiwan; 2007. Aug 29 to Sep 1
Google Scholar
Golanski L, Guillot A, Tardif F: Are conventional protective devices such as fibrous filter media, cartridge for respirators, protective clothing and gloves also efficient for nanoaerosols?Nanosafe; 2008. [http://www.nanosafe.org/home/liblocal/docs/Dissemination%20report/DR1_s.pdf]
Google Scholar
Golanski L, Guiot A, Tardif F: Experimental evaluation of individual protection devices against different types of nanoaerosols: graphite, TiO2, and Pt. J Nanopart Res 2010, 12: 83–89. 10.1007/s11051-009-9804-x
Article
CAS
Google Scholar
Gao P, Jaques PA, Hsiao TC, Shepherd A, Eimer BC, Yang M, Miller A, Gupta B, Shaffer R: Evaluation of nano- and sub-micron particle penetration through ten nonwoven fabrics using a wind-driven approach. J Occup Environ Hygiene 2011, 8: 13–22. 10.1080/15459624.2010.515554
Article
Google Scholar
Ahn K, Lee J, Tsai C, Mead J, Ellenbecker MJ: Use and efficacy of protective gloves in handling nanomaterials.2005. [http://www.turi.org/content/download/3270/29768/.../glove%20presentation.pdf]
Google Scholar
Korniewicz DM, Kirwin M, Cresci K, Sing T, Choo TE, Wool M, Larson E: Barrier protection with examination gloves: double versus single. Am J Infect Control 1994, 22: 12–15. 10.1016/0196-6553(94)90085-X
Article
CAS
PubMed
Google Scholar
Halperin WE: The role of surveillance in the hierarchy of prevention. Am J Ind Med 1996, 29: 321–323. 10.1002/(SICI)1097-0274(199604)29:4<321::AID-AJIM8>3.0.CO;2-R
Article
CAS
PubMed
Google Scholar
NIOSH: Current Intelligence Bulletin 60. Interim guidance for medical screening and hazard surveillance for workers potentially exposes to engineered nanoparticles.2009. [http://www.cdc.gov/niosh/docs/2009–116/pdfs/2009–116.pdf]
Google Scholar
Lichty P: Examples of current surveillance efforts for nanomaterial workers. In Presentation: Nanomaterials and worker health. Medical surveillance, exposure registries, and epidemiologic research. Keystone, CO; 2010.
Google Scholar
Genaidy A, Sequeira R, Rinder M, AAR: Risk analysis and protection measures in a carbon nanofiber manufacturing enterprise: an exploratory investigation. Sci Total Environ 2009, 407: 5825–5838. 10.1016/j.scitotenv.2009.07.035
Article
CAS
PubMed
Google Scholar
Rengasamy S, Eimer BC, Shaffer RE: Nanoparticle filtration performance of commercially available dusk masks. J Int Soc Resp Protect 2008, 25: 27–41.
Google Scholar
Bałazy A, Toivola M, Reponen T, Podgorski A, Zimmer A, Grinshpun SA: Manikin-based performance evaluation of N95 filtering-facepiece respirators challenged with nanoparticles. Ann Occup Hyg 2006, 50: 259–269.
Article
PubMed
Google Scholar
Rengasamy S, Verbofsky R, King WP, Shaffer RE: Nanoparticle penetration through NIOSH-approved N95 filtering-facepeice respirators. J Int Soc Resp Protect 2007, 24: 49–59.
Google Scholar
Rengasamy S, Eimer BC, Shaffer RE: Comparison of nanoparticle filtration performance of NIOSH-approved and CE-marked particulate filtering facepiece respirators. Ann Occup Hyg 2009, 53: 117–128. 10.1093/annhyg/men086
Article
CAS
PubMed
Google Scholar
Rengasamy S, King WP, Eimer BC, Shaffer RE: Filtration performance of NIOSH-approved N95 and P100 filtering facepiece respirators against 4 to 30 nanometer-size nanoparticles. J Occup Environ Hyg 2008, 5: 556–564. 10.1080/15459620802275387
Article
CAS
PubMed
Google Scholar