Open Access

Attitude, reporting behavour and management practice of occupational needle stick and sharps injuries among hospital healthcare workers in Bale zone, Southeast Ethiopia: a cross-sectional study

  • Tolesa Bekele1Email author,
  • Alem Gebremariam2,
  • Muhammedawel Kaso1 and
  • Kemal Ahmed1
Journal of Occupational Medicine and Toxicology201510:42

https://doi.org/10.1186/s12995-015-0085-2

Received: 14 April 2015

Accepted: 1 December 2015

Published: 3 December 2015

Abstract

Background

Although the prevalence of blood borne pathogens in many developing countries is high, documentation of infections due to occupational exposure is limited. Seventy percent of the world’s HIV infected population lives in Sub-Saharan Africa, but only 4 % of cases are reported from this region. Under reporting of needle stick and/or sharps injuries in healthcare facilities was common.

Methods

An institutional based cross-sectional study was conducted in December 2014 among healthcare workers in four hospitals of Bale zone, Southeast Ethiopia. A total of 362 healthcare workers were selected randomly from each of the working departments. Data were collected using self-administered questionnaire and were entered using Epi-Info version 3.5 and analysed using SPSS version 20.0. Multivariable logistic regression analysis was used to identify independent effect of each variable on the reporting behaviour of needle stick and/or sharp injury.

Results

Nearly six out of ten injuries (58.7 %) were not reported to the concerned body. The main reasons for not reporting the injuries were time constraint (35.1 %), sharps which caused injury were not used on any patient (27.0 %), the source patients did not have disease of concern (20.3 %), and lack of knowledge that it should be reported (14.9 %). Half of healthcare workers (HCWs) those who experienced injury had sought medical care next to self based action. Respondents with monthly salary of 450 to 1000 Ethiopian Birr (1 US Dollar = 22.00 Ethiopian Birr) were about six times more likely to report occupational needle stick and/or sharps injury (NSSI) than HCWs with salary of 2001 to 8379 birr (AOR = 5.73). However, HCWs who had no knowledge about probability of infection transmission through NSSI and not taking any self based measures after occurrence of injury were 45 % (AOR = 0.55) and 93 % (AOR = 0.07) less likely to report occupational injury than their counterparts, respectively.

Conclusions

Occupational needle stick and/or sharps injuries are common among HCWs at the study area. Even though majority of respondents were concerned about the risk of NSSI exposure, most respondents did not report it to the concerned body. Therefore, provision of on job training on the risk of occupational NSSI exposure may strengthen HCWs to practice timely reporting and its management in case of occupational injury exposure.

Keywords

Reporting behavior Injury Healthcare workers Bale zone Oromia Ethiopia

Background

World Health Organization (WHO) in 2007 endorsed the Global Plan of Action on Workers’ Health from 2008 to 2017 to provide political framework for development of policies, infrastructure, technologies and partnerships for achieving basic level of health protection in all workplaces throughout the world. The Global Plan of Action addresses all aspects of workers’ health, including primary prevention of occupational hazards, protection and promotion of health at work, employment conditions and improving the response of health systems to workers’ health. In such a way it links occupational health to public health [1].

While as many as twenty blood borne pathogens can be transmitted through accidental needle and/or sharps injury, the potentially life threatening are Human Immunodeficiency Virus (HIV), hepatitis B virus (HBV) and hepatitis C virus (HCV) [2]. Needle stick and sharps injury (NSSI) is an injury with needles, scalpel blade, catheter stylet or other pointed objects which were used for any invasive procedure with a patient and contaminated with blood or body fluids. Sharps injuries are hidden problem; after it happens most of workers forget and get on with their work. Neither the magnitude of the risk of needle stick and sharps injury nor the practices associated with it has been well understood among HCWs [3].

A number of policy strategies are available for avoiding disease burden associated with NSSI, including vaccination against HBV, post exposure prophylaxes (PEP) for HBV, HCV and HIV, reducing the number of injections and invasive procedures where appropriate, using safer devices and properly disposing of needles and other sharps. Despite the presence of many opportunities to reduce the disease burden, the full impact of NSSI is not yet recognized [4]. Most of people at risk for occupational exposures are in developing countries where there is paucity of reporting standard protocols. In addition, poor knowledge and practices related to the risk and hazard of sharps injuries substantially contribute to the probability of the injuries [5].

Although the prevalence of blood borne pathogens in many developing countries is high, documentation of infections caused by occupational exposure in these countries is scarce. Seventy percent of the world’s HIV infected population lives in Sub-Saharan Africa but only 4 % of worldwide cases of occupational HIV infection are reported from this region [6]. Underreporting of sharps injuries by employees is documented in different literatures. The magnitude of underreporting ranges from 22 to 99 % [7]. There are many reasons why healthcare workers do not report sharp injuries. They may perceive that the injuries or the source patients are low risk, they may fear the diseases to which they have potentially been exposed, they may have concerns about job security or the extra paperwork and time involved in follow-up. In addition, they may lack information and training about appropriate reporting procedures or the reporting procedures themselves may be inadequate [8, 9].

Ethiopian healthcare facilities do not have adequate reporting system. This is why most of incidents are not reported and inadequately treated. Tangible evidence on the reporting system and its management in healthcare facilities is very limited and varies from setting to setting. There are few studies conducted on occupational NSSI exposure. However, the reason why HCWs do not report incidents of sharp injuries was not yet well addressed. To the best of our knowledge, there is no any available data reported before about occupational NSSI reporting behaviour and its management among HCWs from the study area.

Methods

The study was carried out in December 2014 at four hospitals namely Ginnir, Robe, Delo mena and Goba. The four hospitals are found in Bale Zone, Oromia Regional State, at Southeast of Ethiopia. By the year 2014, these four hospitals were offering different types of healthcare services for the surrounding community. Hospital based cross-sectional study design was employed. All healthcare workers working in the four hospitals who have direct contact with patients or equipments used on patients were involved in the study. These were doctors, anaesthetists, health officers, nurses, midwives, laboratory personnel, laundry workers and waste handlers. All individuals out of work during data collection due to annual leave and those who could not respond to the questions due to illness were excluded from the study.

The sample size was determined using single population proportion formula with the following assumptions: the proportion of HCWs who experienced needles stick and/or sharp injury in the previous 12 months was 31.0 % [10], 1.96 values of 95 % confidence interval, 5 % margin of error and 10 % non-response rate. The total sample size became 362.

All hospitals in Bale zone were included in the study. Before selection of study participants, first we obtained the list of workers and categorized them into their specific working department. Then proportionate allocation to size was used for each department to share the total sample size. Study participants who fulfil the inclusion criteria were selected by simple random sampling technique using the list of workers taken from each working department.

Questionnaire was developed by referring published literatures [1013]. The questionnaire was first written in English and then translated to Afan Oromo and Amharic (local languages) by experts in both languages and then retranslated to English to check for consistency. Eight data collection facilitators (BSc nurses) were assigned to the four hospitals (two per hospital). Pre-testing was done on 5 % of the same source population other than the sampled population in Goba and Robe hospitals. Based on the pre-test result, necessary correction was made for the questionnaire. Data were collected using self-administered questionnaire.

The questionnaire included background information, attitude about risk of NSSI, its management and reporting behaviour of the respondents. Finally, the questionnaire was administered by data collection facilitators who were trained for 1 day ahead of data collection. Supervision during data collection was done by investigators to see how the data collection facilitators were handling data collection process. Each filled questionnaire was checked for its completeness and consistency on daily basis.

The collected data were checked for completeness and consistency by the principal investigators before data entry for analysis. Prior to data entry, each questionnaire was given a unique code by principal investigator. The principal investigator prepared template and entered data using Epi Info version 3.5 and 20 % of the data were double entered in computer software. Data cleaning were done to check missing values and inconsistencies by running frequencies for each variable. Cleaned data were exported from Epi Info to Statistical Program for Social Sciences (SPSS) version 20.0 for analysis. Frequency distribution and percentage were used to present the results of uni-variate analysis. Logistic regression model was used to identify the independent effect of each predictor variable on the dependent variable. Those variables which were significant on bi-variate analysis (P-value < 0.05) were entered to multivariable logistic regression analysis. The association between the reporting behaviour of NSSI and independent variables was determined using odds ratio (OR) with 95 % confidence interval (CI). The level of significance was taken at α = 0.05.

Ethical clearance was obtained from the Ethical and Review Committee of Madda Walabu University, College of Medicine and Health Sciences. An official permission was communicated through formal letter from Madda Walabu University Research and Community Service Directorate Office to the respective hospital. Written consent was secured from each participant. Participants were told that the information provided was confidential and that their identities were not revealed in association with the information they provided.

Results

Socio-demographic characteristics of participants

From a total of 362 HCWs working in four hospitals, 340 fully responded the questionnaire, giving a response rate of 93.9 %. The mean age of the respondents were 28.3 (SD = ± 7.7) years. More than eight out of ten (82.1 %) of the respondents were found in the age group of 18 to 32 years. Majority of the participants were Orthodox Christian (62.1 %) by religion and were Oromo (79.1 %) by Ethnicity. Nearly half of the respondents (49.7 %) were nurses by profession (Table 1).
Table 1

Socio-demographic characteristics of hospital healthcare workers in Bale zone, December, 2014 (n = 340)

Socio- demographic characteristics

Frequency (n)

Percentage (%)

Participants’ working hospital

  

 Ginir

90

26.5

 Goba

115

33.8

 Delo mena

70

20.6

 Bale Robe

65

19.1

Sex of respondents

  

 Male

153

45.0

 Female

187

55.0

Age group of participants

  

 18–32

279

82.1

 33–47

44

12.9

 48–62

17

5.0

Marital status

  

 Ever married

191

56.2

 Never married

149

43.8

Religion

  

 Orthodox

211

62.1

 Muslim

67

19.7

 Protestant

58

17.0

 Wakefata

4

1.2

Ethnicity

  

 Oromo

269

79.1

 Amhara

59

17.3

 Gurage

6

1.8

 Tigrie

3

0.9

 Others (Harari, Somali and Wolayita)

3

0.9

Educational level

  

 Grade(5–12th)

55

16.2

 College diploma and above

285

83.8

Monthly salary

  

 450–1000

77

22.7

 1001–2000

60

17.6

 2001–8379

203

59.7

Attitude about risk of needle stick and sharp injury

Almost all of the respondents 334 (98.2 %) knew about the risk of NSSI exposure. Among the HCWs who knew about the risk, 273 (81.3 %), 46 (13.7 %) and 17 (5.1 %) rated as high, moderate and low risk, respectively. More than eight out of ten 283 (83.2 %) respondents perceived that NSSI is avoidable. The main perceived prevention methods of NSSI were proper disposal of the used needles (35.7 %), careful collection of needles and/or sharps (25.1 %) and adherence to universal precautions (21.2 %). Significant proportion (16.2 %) of respondents also perceived that personal protective equipment and other methods such as not recapping needle and sterilizing before disposal (1.8 %) as a method of prevention. Nearly all respondents 338 (99.4 %) knew that diseases can be transmitted through NSSI exposure. Respondents were asked about type of diseases which can be transmitted due to occupational NSSI exposure. Almost eight out of ten (81.1 %) HCWs reported at least three diseases including HIV, HBV and HCV. Only ten respondents reported that malaria can be transmitted through occupational NSSI.

Respondents were asked about what contributed to NSSI in their respective hospital. Thirty one percent of the participants reported that lack of personal protective equipment in the working place could put HCWs at increased risk of injury. Similarly, excess workload (28.5 %), improper disposing of needles into safety box after use (22.9 %), and other such as over crowed in working department, waste handling and lack of hand washing facility in the working unit account for 17.6 % of injuries. Most of the respondents (95.6 %) reported that safety box was available in their working department. Whereas 148 (43.5 %) of the respondents reported that there was no occupational NSSI reporting protocol in their working department. Only 20 % of HCWs received their vaccination after starting their career at the hospital. From a total of the respondents, 119 (35.0 %) got tested for HIV, HBV and HCV at the time of the study. Of those who got tested, nearly half (54.9 %) of the respondents had been tested for at least one of the three diseases (HIV, HBV and HCV).

NSSI management and reporting behaviour of the respondents

Of those HCWs experienced NSSI, majority 107 (84.9 %) of them took self based measures. The most common self based actions taken were washing the injured body part with soap and water (53.3 %), washed with iodine or alcohol solution (42.1 %), and HIV testing (40.2 %). However, 19 (15.1 %) of HCWs did not take any action for their injury. Nearly six out of ten (58.7 %) respondents did not report the accident of their injury to concerned body. The main reasons for not reporting the injury were: time constraints (35.1 %), sharps caused injury were not used on any patient (27.0 %), it was used on patient but the patient did not have disease of concern (20.3 %) and lack of knowledge that it should be reported (14.9 %).

Half of the HCWs who experienced injury had sought medical care next to self based action. Of those who sought medical care, 39.7 % took post exposure prophylaxes such as antiretroviral agents (zidovudine) and tetanus anti-toxoid (TAT). Among the NSSI events reported to infection prevention department, 94.2 % were reported immediately after the injury (Table 2).
Table 2

Management and reporting behaviour of NSSI among hospital healthcare workers, Bale zone, December, 2014

Variables

Frequency (n)

Percentage (%)

Ever experienced NSSI at work (n = 340)

  

 Yes

126

37.1

 No

214

62.9

Self management taken after injury (n = 126)

  

 Yes

107

84.9

 No

19

15.1

Type of action taken after injurya

  

 Washed with soap and water

57

53.3

 Washed with iodine or alcohol

45

42.1

 Get tested for HIV

43

40.2

 Take post exposure prophylaxis (PEP)

25

23.4

 Take tetanus anti-toxoid (TAT)

31

29.0

 Squeezing to extract more blood

10

8.5

 Applying pressure to stop bleeding

18

16.8

Ever reported NSSI to concerned body (n = 126)

  

 Yes

52

41.3

 No

74

58.7

Time of injury reported (n = 52)

  

 Immediately after injury

49

94.2

 Late before going off work place

2

3.8

 After two days of injury

1

1.9

Reasons for not reported injurya

  

 Being too busy at the time of injury

26

35.1

 Sharps caused injury never used on patient

20

27.0

 Used on patient but was not disease of concern

15

20.3

 They did not know as they should report

11

14.9

 They did not know how to report

7

9.5

 Their colleagues told them not to worry

1

1.4

Sought medical care after injury (n = 126)

  

 Yes

63

50.0

 No

63

50.0

Treatment given (n = 63)

  

 Tested for different diseases

15

23.8

 Pre-test counselling

4

6.3

 Post-test counselling

19

30.2

 PEP was given and follow-up started

25

39.7

aEach of the percentages does not add up to 100 % because respondents could choose several responses which could be more than one

Factors associated with reporting behaviour of needle stick and/or sharp injury

On bi-variate analysis respondents from Goba hospital were four times more likely to report occupational NSSI compared to respondents from other hospitals in the study area. But this becomes not significant after controlling other variables in the multivariable analysis (Table 3). Respondents with educational status (5–12th grade), presence of occupational injury reporting protocol and safety guideline in working department were the predictors of reporting the NSSI events compared to their counterparts. But these were also not significant on multivariable analysis. Respondents with monthly salary of 450 to 1000 Ethiopian Birr (1 US Dollar = 22.00 Ethiopian Birr) were about six times more likely to report occupational NSSI than HCWs with salary of 2001 to 8379 birr (AOR = 5.73, 95 % CI: 1.71, 19.23). However, HCWs who did not know that diseases can be transmitted through needle stick and/or sharp injury and who did not take self based measures after occurrence of injury were 45 and 93 % less likely to report occupational injury than their counterparts (AOR = 0.55, 95 % CI: 0.47, 0.68) and (AOR = 0.07, 95 % CI: 0.01, 0.63), respectively (Table 3).
Table 3

Multivariable analyses of factors associated with NSSI reporting behaviour among hospital healthcare workers in Bale zone, December, 2014

Variables

Reporting of NSSIs exposure

Crude OR (95 % CI)

Adjusted OR (95 % CI)

Working hospital

  

 Ginir

1.63 (0.52, 510)

1.04 (0.27, 4.05)

 Goba

4.1 (1.37, 12.30)*

2.08 (0.46, 9.44)

 Delo mena

1.62 (0.44, 5.95)

0.48 (0.08, 2.90)

 Bale Robe

Ref

Ref

Educational level

  

 Grade(5-12th)

2.95 (1.07, 8.11)*

7.54 (0.46, 12.56)

 College diploma and above

Ref

Ref

Monthly income

  

 450–1000

3.05 (1.17,7.98)*

5.73 (1.71, 19.23)*

 1001–2000

1.68 (0.68, 4.15)

2.67 (0.88, 8.10)

 2001–8379

Ref

Ref

Diseases can be transmitted by NSSI

  

 Yes

Ref

Ref

 Do not know

0.70 (0.31, 0.89)*

0.55 (0.47, 0.68)*

Self management taken after injury

  

 Yes

Ref

Ref

 No

0.06 (0.01, 0.47)*

0.07 (0.01,0.63)*

Presence of protocol for reporting

  

 Yes

2.62 (1.26, 5.46)*

2.17 (0.74, 6.34)

 No

Ref

Ref

Safety guidelines available

  

 Yes

2.87 (1.34, 6.15)*

2.39 (0.95, 6.07)

 No

Ref

Ref

*Significant at P < 0.05, Ref Reference

Discussion

Nearly four out of five respondents in this study rated the level of risk of infection after exposure to NSSI is as high risk. This result is much higher than the study done in Royal College of nursing in London in which 15 % of the respondents perceived that the level of risk of contracting a blood borne that disease from their last injury is as high risk [14]. Almost all respondents (99.4 %) knew diseases can be transmitted through NSSI. This finding is comparable with the study done in Felege Hiwot Referral hospital in Bahir Dar (98.5 %) [10]. It is also indicated in other study that most of HCWs know the possibility that NSSI could lead to the contracting of diseases such as HIV, hepatitis B and C [15].

The current study found that two fifth of the respondents reported that there was no reporting protocol for NSSI in their respective working department. In similar way the study done in two hospitals of Tanzania reported that more than half of the observed hospital departments did not have guidelines for prevention and management of occupational exposure to HIV infections [16]. Lack of reporting protocol supplies may seriously hampers reporting effort and puts both patients and HCWs at increased risk of infection. Current study showed that there was low HBV vaccination coverage (20.3 %) in the study area. This result is much lower compared to study done in Pakistan where 86.3 % of HCWs received their vaccination after starting their job at the hospital [17]. It is recommended that the need for immunization against HBV in the start of career in healthcare settings [4] but no such policy is implemented in Ethiopian healthcare facilities and specifically at the study area.

In this study it was revealed that half of the injured workers did not seek medical care after they sustained NSSI. This is inconsistent with the study done in Mongolian public hospitals in which out of the respondents who reported at least one NSSI in the previous 3 months, 35.9 % answered as they did not seek medical assistance after the occurrence of an injury [12]. This may imply that a system should be introduced in healthcare facilities to ensure that all healthcare workers should be pre-informed where to seek medical treatment after the occurrence of NSSI.

Nearly 60 % of the respondents did not report the injury to the concerned body. The main reasons stated for not reporting were time constraint, needles or sharps caused injury were not used on patients and low perceived risk of diseases transmission due to injury. This result is almost in agreement with Ahmadabad (64 %) [18], and in Alexandria (74.7 %) [19]. But it is higher as compared to the report from Felege Hiwot Referral hospital in Bahir Dar, Ethiopia (46.1 %). The reason for not reporting the occurrence of injury was; the victims perceived that the patient had low probability of being HIV positive especially when the disease status of the patient is unknown [10]. Barriers that hinder reporting of injuries should be appropriately identified in order to provide counselling and treatment for HCWs after exposure to the event.

Respondents who had lower monthly salary were six times more likely to report occupational NSSI. The possible justification might be those HCWs with lower income may seek help from employer to get medical expenses. In addition, those workers with high income may not report to employer to seek money for treatment since they can afford expenses by themselves. Healthcare workers who did not know probability of diseases transmission through NSSI had 45 % lower odds of reporting their injury. Similarly, those who did not take self based measures after occurrence of injury were 93 % less likely to report occupational injury to the concerned body. This may suggest that providing on job training for HCWs on the importance of reporting after injury could improve the victim’s medical seeking behavior.

In interpreting the findings of this study, taking the limitations into consideration is important. Since the study was based on self-reported data in assessing reporting behaviour and management of occupational NSSI exposure; a common threat to the validity of the self-report that can lead to information bias is social desirability and recall bias. In addition, cross-sectional study by its nature cannot establish temporal cause and effect relationships.

Conclusions

Based on the findings of the study it is concluded that HCWs working in the four hospitals of Bale zone are at increased risk of blood borne pathogens infection due to NSSI. Knowledge of the risk of blood borne pathogens transmission due to occupational exposure and whom to contact in the event of NSSI exposure seems to affect practices of HCWs in relation to its management and timely reporting. Therefore, more rigorous control measures and occupational injury prevention and its management programs need to be implemented by national and institutions. In addition, monitoring and control of health of healthcare workers in order to promote decent and safe work throughout the health facilities is important. Furthermore, regular reporting, provision of hepatitis B immunoglobulin (HBIG) for victims and evaluation of occupational NSSI exposures need to be introduced in the study area.

Declarations

Acknowledgements

We would like to acknowledge Madda Walabu University, College of Medicine and Health Sciences for giving us this important opportunity. Our acknowledgement also goes to our friends who give us comments on the proposal structure and arrangement. Finally, we would like to acknowledge Bale zone health office, respective hospital administrators, our data collection facilitators and study subjects.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Department of Public Health, College of Medicine and Health Sciences, Madda Walabu University
(2)
Department of Public Health, College of Medicine and Health Sciences, Adigrat University

References

  1. World Health Organization. The Global Occupational Health Network: GOHNET Newsletter. 2007; Issue No 14.Google Scholar
  2. De Laune S. Risk reduction through testing, screening, and infection control precautions with special emphasis on needle stick injuries. Infect Control Hosp Epidemiol. 1990;11:563–5.View ArticlePubMedGoogle Scholar
  3. Stewardson DA. Occupational exposures occurring among dental assistants in a UK dental school. Prim Dent Care. 2003;10:23–6.View ArticlePubMedGoogle Scholar
  4. Rapiti E, Prüss ÜA, Hutin Y. Sharps injuries: assessing the burden of disease from sharps injuries to health-care workers at national and local levels. Geneva: WHO Environmental Burden of Disease Series; 2005. Issue No 11.Google Scholar
  5. Sagoe MC, Pearson RD, Perry J, Jagger J. Risks to health care workers in developing countries. New England J Med. 2001;345:538–41.View ArticleGoogle Scholar
  6. Ippolito G, Puro V, Heptonstall J, Jagger J, De-Carli G, Petrosillo N. Occupational human immunodeficiency virus infection in health care workers: worldwide cases. Clin Infect Dis. 1999;28:365–83.View ArticlePubMedGoogle Scholar
  7. Nagao M, Iinuma Y, Igawa J, Matsumura Y, Shirano M, Matsushima A, et al. Accidental exposures to blood and body fluid in the operation room and the issue of underreporting. American Journal of Infection Control. 2009;37:541–544.View ArticlePubMedGoogle Scholar
  8. Haiduven DJ, Simpkins SM, Phillips ES, Stevens DA. A survey of percutaneous/ mucocutaneous injury reporting in a public teaching hospital. Journal of Hosp Infect. 1999;41:151–4.View ArticleGoogle Scholar
  9. Massachusetts. Department of Public Health Occupational Health Surveillance Program. Sharps Injuries among Hospital Workers in Massachusetts,(Unpublished document); 2010.Google Scholar
  10. Lulie W, Emebet A, Medihanit T, Hanna F, Dereje B, Muluken A. Factors associated with needle stick and sharp injuries, among healthcare workers in Felege Hiwot Referral Hospital, Bahir Dar, Northwest Ethiopia. Int J Infect Control. 2013;9:1996–9783.Google Scholar
  11. Ali G, Abasalt B, Pegah L, Amin A. Risk factors of needlestick and sharps injuries among healthcare workers. International Journal of Hospital Research. 2013;2:31–8.Google Scholar
  12. Kakizaki M, Ikeda N, Ali M, Enkhtuya B, Tsolmon M, Shibya K, et al. Needle stick and sharps injuries among health care workers at public tertiary hospitals in an urban community in Mongolia. BMC Research Notes. 2011;4:184.PubMed CentralView ArticlePubMedGoogle Scholar
  13. Reda AA, Fisseha S, Mengistie B, Vandeweerd JM. Standard precautions: occupational exposure and behavior of health care workers in Ethiopia. PLoS One. 2010;5:12. doi:10.1371/journal.pone.0014420.View ArticleGoogle Scholar
  14. Jane B, Geoff P. Needle sick injury in Royal College of Nursing in London. London, UK. Employment Research Ltd; 2008.Google Scholar
  15. Sumathi M, Prashant KS, Jain RK, Meenakshi M, Manju B. Needle stick injuries among health care workers in a tertiary care hospital of India. Indian J Med Res. 2010;131:405–10.Google Scholar
  16. Mashoto OK, Mubyazi MG, Hussein ME, Mohamed H, Malebo MH. Estimated risk of HIV acquisition and practice for preventing occupational exposure: a study of healthcare workers at Tumbi and Dodoma Hospitals, Tanzania. BMC Health Serv Res. 2013;13:369.PubMed CentralView ArticlePubMedGoogle Scholar
  17. Attaullah S, Khan S, Ayaz S, Khan NS, Mullah N, Ali I, et al. Prevalence of HBV and HBV vaccination coverage in health care workers of tertiary hospitals of Peshawar, Pakistan. Virol J. 2011;8:275.PubMed CentralView ArticlePubMedGoogle Scholar
  18. Goswami M, Patel P, Nayak S, Mehta HK, Shah R, Devmurari D, et al. Needle stick and sharp instruments injuries among health care providers at cardiology institute, Ahmedabad. National Journal of Community Medicine. 2010;1:114–7.View ArticleGoogle Scholar
  19. Hanafi M, Mohamed AM, Kassem MS, Shawki M. Needle stick injuries among health care workers of University of Alexandria hospitals. East Mediterr Health J. 2011;17:26–35.PubMedGoogle Scholar

Copyright

© Bekele et al. 2015

Advertisement