Poole CJM, Basu S. Systematic review: occupational illness in the waste and recycling sector. Occup Med (Lond). 2017;67(8):626–36. https://doi.org/10.1093/occmed/kqx153.
Article
CAS
Google Scholar
Madsen AM, Matthiesen CB. Exposure to aerosols during high-pressure cleaning and relationship with health effects. Ann Agric Environ Med. 2013;20(3):420–5.
CAS
PubMed
Google Scholar
Liebers V, Raulf-Heimsoth M, Bruning T. Health effects due to endotoxin inhalation (review). Arch Toxicol. 2008;82(4):203–10. https://doi.org/10.1007/s00204-008-0290-1.
Article
CAS
PubMed
Google Scholar
Basinas I, Sigsgaard T, Kromhout H, Heederik D, Wouters IM, Schlunssen V. A comprehensive review of levels and determinants of personal exposure to dust and endotoxin in livestock farming. J Expo Sci Environ Epidemiol. 2015;25(2):123–37. https://doi.org/10.1038/jes.2013.83.
Article
CAS
PubMed
Google Scholar
Hasan S, Kulkarni NN, Asbjarnarson A, Linhartova I, Osicka R, Sebo P, et al. Bordetella pertussis adenylate cyclase toxin disrupts functional integrity of bronchial epithelial layers. Infect Immun. 2018;86(3):e00445-17
Liang X, Ji Y. Involvement of alpha5beta1-integrin and TNF-alpha in Staphylococcus aureus alpha-toxin-induced death of epithelial cells. Cell Microbiol. 2007;9(7):1809–21. https://doi.org/10.1111/j.1462-5822.2007.00917.x.
Article
CAS
PubMed
Google Scholar
Lucas R, Hadizamani Y, Gonzales J, Gorshkov B, Bodmer T, Berthiaume Y, et al. Impact of bacterial toxins in the lungs. Toxins (Basel). 2020;12(4):223. https://doi.org/10.3390/toxins12040223.
Giaever I, Keese CR. Monitoring fibroblast behavior in tissue culture with an applied electric field. Proc Natl Acad Sci U S A. 1984;81(12):3761–4. https://doi.org/10.1073/pnas.81.12.3761.
Article
CAS
PubMed
PubMed Central
Google Scholar
Opp D, Wafula B, Lim J, Huang E, Lo JC, Lo CM. Use of electric cell-substrate impedance sensing to assess in vitro cytotoxicity. Biosens Bioelectron. 2009;24(8):2625–9. https://doi.org/10.1016/j.bios.2009.01.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ceriotti L, Ponti J, Colpo P, Sabbioni E, Rossi F. Assessment of cytotoxicity by impedance spectroscopy. Biosens Bioelectron. 2007;22(12):3057–63. https://doi.org/10.1016/j.bios.2007.01.004.
Article
CAS
PubMed
Google Scholar
Xiao C, Lachance B, Sunahara G, Luong JH. An in-depth analysis of electric cell-substrate impedance sensing to study the attachment and spreading of mammalian cells. Anal Chem. 2002;74(6):1333–9. https://doi.org/10.1021/ac011104a.
Article
CAS
PubMed
Google Scholar
Xing JZ, Zhu L, Jackson JA, Gabos S, Sun XJ, Wang XB, et al. Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol. 2005;18(2):154–61. https://doi.org/10.1021/tx049721s.
Article
CAS
PubMed
Google Scholar
Douwes J, Thorne P, Pearce N, Heederik D. Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg. 2003;47(3):187–200. https://doi.org/10.1093/annhyg/meg032.
Article
CAS
PubMed
Google Scholar
Walser SM, Gerstner DG, Brenner B, Bunger J, Eikmann T, Janssen B, et al. Evaluation of exposure-response relationships for health effects of microbial bioaerosols - a systematic review. Int J Hyg Environ Health. 2015;218(7):577–89. https://doi.org/10.1016/j.ijheh.2015.07.004.
Article
PubMed
Google Scholar
Buchanan PJ, McNally P, Harvey BJ, Urbach V. Lipoxin a(4)-mediated KATP potassium channel activation results in cystic fibrosis airway epithelial repair. Am J Physiol Lung Cell Mol Physiol. 2013;305(2):L193–201. https://doi.org/10.1152/ajplung.00058.2013.
Article
CAS
PubMed
Google Scholar
Zabner J, Karp P, Seiler M, Phillips SL, Mitchell CJ, Saavedra M, et al. Development of cystic fibrosis and noncystic fibrosis airway cell lines. Am J Physiol Lung Cell Mol Physiol. 2003;284(5):L844–54. https://doi.org/10.1152/ajplung.00355.2002.
Article
CAS
PubMed
Google Scholar
Cooksley C, Roscioli E, Wormald PJ, Vreugde S. TLR response pathways in NuLi-1 cells and primary human nasal epithelial cells. Mol Immunol. 2015;68(2 Pt B):476–83.
Article
CAS
Google Scholar
Kato K, Lillehoj EP, Kai H, Kim KC. MUC1 expression by human airway epithelial cells mediates Pseudomonas aeruginosa adhesion. Front Biosci (Elite Ed). 2010;2:68–77.
Google Scholar
Pickering J, Teo TH, Thornton RB, Kirkham LA, Zosky GR, Clifford HD. Bacillus licheniformis in geogenic dust induces inflammation in respiratory epithelium. Environ Res. 2018;164:248–54. https://doi.org/10.1016/j.envres.2018.02.025.
Article
CAS
PubMed
Google Scholar
Monnappa AK, Bari W, Choi SY, Mitchell RJ. Investigating the responses of Human epithelial cells to predatory Bacteria. Sci Rep. 2016;6(1):33485. https://doi.org/10.1038/srep33485.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engholm DH, Kilian M, Goodsell DS, Andersen ES, Kjaergaard RS. A visual review of the human pathogen Streptococcus pneumoniae. FEMS Microbiol Rev. 2017;41(6):854–79. https://doi.org/10.1093/femsre/fux037.
Article
CAS
PubMed
Google Scholar
Awan F, Dong Y, Wang N, Liu J, Ma K, Liu Y. The fight for invincibility: environmental stress response mechanisms and Aeromonas hydrophila. Microb Pathog. 2018;116:135–45. https://doi.org/10.1016/j.micpath.2018.01.023.
Article
PubMed
Google Scholar
Doughari HJ, Ndakidemi PA, Human IS, Benade S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ. 2011;26(2):101–12. https://doi.org/10.1264/jsme2.ME10179.
Article
PubMed
Google Scholar
Fulsundar S, Kulkarni HM, Jagannadham MV, Nair R, Keerthi S, Sant P, et al. Molecular characterization of outer membrane vesicles released from Acinetobacter radioresistens and their potential roles in pathogenesis. Microb Pathog. 2015;83–84:12–22.
Article
Google Scholar
Coburn PS, Gilmore MS. The enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells. Cell Microbiol. 2003;5(10):661–9. https://doi.org/10.1046/j.1462-5822.2003.00310.x.
Article
CAS
PubMed
Google Scholar
Martin V, Vela AI, Gilbert M, Cebolla J, Goyache J, Dominguez L, et al. Characterization of Aerococcus viridans isolates from swine clinical specimens. J Clin Microbiol. 2007;45(9):3053–7. https://doi.org/10.1128/JCM.00156-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Billington SJ, Jost BH, Songer JG. Thiol-activated cytolysins: structure, function and role in pathogenesis. FEMS Microbiol Lett. 2000;182(2):197–205. https://doi.org/10.1016/S0378-1097(99)00536-4.
Article
CAS
PubMed
Google Scholar
Palmer M. The family of thiol-activated, cholesterol-binding cytolysins. Toxicon. 2001;39(11):1681–9. https://doi.org/10.1016/S0041-0101(01)00155-6.
Article
CAS
PubMed
Google Scholar
Cabanas MJ, Vazquez D, Modolell J. Inhibition of ribosomal translocation by aminoglycoside antibiotics. Biochem Biophys Res Commun. 1978;83(3):991–7. https://doi.org/10.1016/0006-291X(78)91493-6.
Article
CAS
PubMed
Google Scholar
Chen G, Branton PE, Shore GC. Induction of p53-independent apoptosis by hygromycin B: suppression by Bcl-2 and adenovirus E1B 19-kDa protein. Exp Cell Res. 1995;221(1):55–9. https://doi.org/10.1006/excr.1995.1351.
Article
CAS
PubMed
Google Scholar
Sahu AK, Said MS, Hingamire T, Gaur M, Khan A, Shanmugam D, et al. Approach to nigericin derivatives and their therapeutic potential. RSC Adv. 2020;10(70):43085–91. https://doi.org/10.1039/D0RA05137C.
Article
CAS
Google Scholar
Rangasamy L, Chelvam V, Kanduluru AK, Srinivasarao M, Bandara NA, You F, et al. New mechanism for release of endosomal contents: osmotic lysis via Nigericin-mediated K(+)/H(+) exchange. Bioconjug Chem. 2018;29(4):1047–59. https://doi.org/10.1021/acs.bioconjchem.7b00714.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breitbart H. Effect of the membrane active ionophore, nigericin, on motility of ram spermatozoa. Arch Androl. 1984;12(1):39–43. https://doi.org/10.3109/01485018409161146.
Article
CAS
PubMed
Google Scholar
Hallgren A, Claesson C, Saeedi B, Monstein HJ, Hanberger H, Nilsson LE. Molecular detection of aggregation substance, enterococcal surface protein, and cytolysin genes and in vitro adhesion to urinary catheters of enterococcus faecalis and E. faecium of clinical origin. Int J Med Microbiol. 2009;299(5):323–32. https://doi.org/10.1016/j.ijmm.2008.10.001.
Article
CAS
PubMed
Google Scholar
Rubins JB, Duane PG, Clawson D, Charboneau D, Young J, Niewoehner DE. Toxicity of pneumolysin to pulmonary alveolar epithelial cells. Infect Immun. 1993;61(4):1352–8. https://doi.org/10.1128/iai.61.4.1352-1358.1993.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubins JB, Janoff EN. Pneumolysin: a multifunctional pneumococcal virulence factor. J Lab Clin Med. 1998;131(1):21–7. https://doi.org/10.1016/S0022-2143(98)90073-7.
Article
CAS
PubMed
Google Scholar
Citterio B, Francesca B. Aeromonas hydrophila virulence. Virulence. 2015;6(5):417–8. https://doi.org/10.1080/21505594.2015.1058479.
Article
PubMed
PubMed Central
Google Scholar
Bhowmick UD, Bhattacharjee S. Bacteriological, clinical and virulence aspects of Aeromonas-associated diseases in humans. Pol J Microbiol. 2018;67(2):137–49. https://doi.org/10.21307/pjm-2018-020.
Article
PubMed
PubMed Central
Google Scholar
Wang T, Costa V, Jenkins SG, Hartman BJ, Westblade LF. Acinetobacter radioresistens infection with bacteremia and pneumonia. IDCases. 2019;15:e00495. https://doi.org/10.1016/j.idcr.2019.e00495.
Article
PubMed
PubMed Central
Google Scholar
Fernandez-Bravo A, Figueras MJ. An update on the genus aeromonas: taxonomy, epidemiology, and pathogenicity. Microorganisms. 2020;8(1):129. https://doi.org/10.3390/microorganisms8010129.
Liu G, Yin J, Han B, Barkema HW, Shahid M, De Buck J, et al. Adherent/invasive capacities of bovine-associated Aerococcus viridans contribute to pathogenesis of acute mastitis in a murine model. Vet Microbiol. 2019;230:202–11. https://doi.org/10.1016/j.vetmic.2019.02.016.
Article
CAS
PubMed
Google Scholar
Fallschissel K, Klug K, Kampfer P, Jackel U. Detection of airborne bacteria in a German Turkey house by cultivation-based and molecular methods. Ann Occup Hyg. 2010;54(8):934–43. https://doi.org/10.1093/annhyg/meq054.
Article
CAS
PubMed
Google Scholar
White JK, Nielsen JL, Madsen AM. Microbial species and biodiversity in settling dust within and between pig farms. Environ Res. 2019;171:558–67. https://doi.org/10.1016/j.envres.2019.01.008.
Article
CAS
PubMed
Google Scholar