Riley L, Urbine D. Chronic silicosis with progressive massive fibrosis. N Engl J Med. 2019;380(23):2256. https://doi.org/10.1056/NEJMicm1809675.
Article
PubMed
Google Scholar
Leung C, Yu I, Chen W. Silicosis. Lancet. 2012;379:2008–18.
Article
CAS
PubMed
Google Scholar
The Lancet Respiratory Medicine. The world is failing on silicosis. Lancet Respir Med. 2019;7:283. https://doi.org/10.1016/S2213-2600(19)30078-5.
Article
CAS
PubMed
Google Scholar
Han S, Chen H, Harvey MA, Stemn E, Cliff D. Focusing on coal workers’ lung diseases: a comparative analysis of China, Australia, and the United States. Int J Environ Res Public Health. 2018;15(11):2565. https://doi.org/10.3390/ijerph15112565.
Steenland K, Goldsmith DF. Silica exposure and autoimmune diseases. Am J Ind Med. 1995;28(5):603–8. https://doi.org/10.1002/ajim.4700280505.
Article
CAS
PubMed
Google Scholar
Haustein UF. Silica-induced lupus erythematosus. Acta Derm Venereol. 1998;78(1):73–4. https://doi.org/10.1080/00015559850135940.
Article
CAS
PubMed
Google Scholar
Rosenman KD, Moore-Fuller M, Reilly MJ. Connective tissue disease and silicosis. Am J Ind Med. 1999;35(4):375–81. https://doi.org/10.1002/(SICI)1097-0274(199904)35:4<375::AID-AJIM8>3.0.CO;2-I.
Article
CAS
PubMed
Google Scholar
Zhang XB. Cellular reprogramming of human peripheral blood cells. Genomics Proteomics Bioinformatics. 2013;11(5):264–74. https://doi.org/10.1016/j.gpb.2013.09.001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murashima A, Takasaki Y, Ohgaki M, Hashimoto H, Shirai T, Hirose S. Activated peripheral blood mononuclear cells detected by murine monoclonal antibodies to proliferating cell nuclear antigen in active lupus patients. J Clin Immunol. 1990;10(1):28–37. https://doi.org/10.1007/BF00917495.
Article
CAS
PubMed
Google Scholar
Hu S, Tao D, He P. Immunophenotyping of lymphocyte T and B in the peripheral blood of systemic lupus erythematosus. J Tongji Med Univ. 2001;21:108–9.
Article
CAS
PubMed
Google Scholar
Otsuki T, Sakaguchi H, Tomokuni A, Aikoh T, Matsuki T, Isozaki Y, et al. Detection of alternatively spliced variant messages of Fas gene and mutational screening of Fas and Fas ligand coding regions in peripheral blood mononuclear cells derived from silicosis patients. Immunol Lett. 2000;72(2):137–43. https://doi.org/10.1016/S0165-2478(00)00177-2.
Article
CAS
PubMed
Google Scholar
Otsuki T, Sakaguchi H, Tomokuni A, Aikoh T, Matsuki T, Kawakami Y, et al. Soluble Fas mRNA is dominantly expressed in cases with silicosis. Immunology. 1998;94(2):258–62. https://doi.org/10.1046/j.1365-2567.1998.00509.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otsuki T, Tomokuni A, Sakaguchi H, Aikoh T, Matsuki T, Isozaki Y, et al. Over-expression of the decoy receptor 3 (DcR3) gene in peripheral blood mononuclear cells (PBMC) derived from silicosis patients. Clin Exp Immunol. 2000;119(2):323–7. https://doi.org/10.1046/j.1365-2249.2000.01132.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu S, Hao C, Bao L, Zhao D, Zhang H, Hou J, et al. Silica particles mediate phenotypic and functional alteration of dendritic cells and induce Th2 cell polarization. Front Immunol. 2019;10:787. https://doi.org/10.3389/fimmu.2019.00787.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joshi GN, Goetjen AM, Knecht DA. Silica particles cause NADPH oxidase-independent ROS generation and transient phagolysosomal leakage. Mol Biol Cell. 2015;26(18):3150–64. https://doi.org/10.1091/mbc.e15-03-0126.
Article
CAS
PubMed
PubMed Central
Google Scholar
Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol. 2014;5:352. https://doi.org/10.3389/fphys.2014.00352.
Article
PubMed
PubMed Central
Google Scholar
Zhang ZQ, Zhang CZ, Shao B, Pang DH, Han GZ, Lin L. Effects of abnormal expression of fusion and fission genes on the morphology and function of lung macrophage mitochondria in SiO-induced silicosis fibrosis in rats in vivo. Toxicol Lett. 2019;312:181–7. https://doi.org/10.1016/j.toxlet.2019.04.029.
Article
CAS
PubMed
Google Scholar
Zhang L, He YL, Li QZ, Hao XH, Zhang ZF, Yuan JX, et al. N-acetylcysteine alleviated silica-induced lung fibrosis in rats by down-regulation of ROS and mitochondrial apoptosis signaling. Toxicol Mech Methods. 2014;24(3):212–9. https://doi.org/10.3109/15376516.2013.879974.
Article
CAS
PubMed
Google Scholar
Huang H, Chen M, Liu F, Wu H, Wang J, Chen J, et al. N-acetylcysteine tiherapeutically protects against pulmonary fibrosis in a mouse model of silicosis. Biosci Rep. 2019;39(7):BSR20190681. https://doi.org/10.1042/BSR20190681.
Nakashima K, Sato T. Regulatory role of heme oxygenase-1 in silica-induced lung injury. Respir Res. 2018;19:144.
Article
PubMed
PubMed Central
Google Scholar
Yang J, Wang T, Li Y, Yao W, Ji X, Wu Q, et al. Earthworm extract attenuates silica-induced pulmonary fibrosis through Nrf2-dependent mechanisms. Lab Investig. 2016;96(12):1279–300. https://doi.org/10.1038/labinvest.2016.101.
Article
CAS
PubMed
Google Scholar
Martinez FJ, de Andrade JA, Anstrom KJ, King TE Jr, Raghu G. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2093–101. https://doi.org/10.1056/NEJMoa1401739.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moser MA, Chun OK. Vitamin C and heart health: a review based on findings from epidemiologic studies. Int J Mol Sci. 2016;17(8):1328. https://doi.org/10.3390/ijms17081328.
Castranova V. Generation of oxygen radicals and mechanisms of injury prevention. Environ Health Perspect. 1994;102(Suppl 10):65–8. https://doi.org/10.1289/ehp.94102s1065.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lazzarino G, Listorti I, Bilotta G, Capozzolo T, Amorini AM. Water- and fat-soluble antioxidants in human seminal plasma and serum of fertile males. Antioxidants. 2019;8:4. https://doi.org/10.3390/antiox8040096.
Article
CAS
Google Scholar
Serrano I, Romero-Puertas MC, Sandalio LM, Olmedilla A. The role of reactive oxygen species and nitric oxide in programmed cell death associated with self-incompatibility. J Exp Bot. 2015;66(10):2869–76. https://doi.org/10.1093/jxb/erv083.
Article
CAS
PubMed
Google Scholar
Palabiyik SS, Girgin G, Tutkun E, Yilmaz OH, Baydar T. Immunomodulation and oxidative stress in denim sandblasting workers: changes caused by silica exposure. Arh Hig Rada Toksikol. 2013;64(3):431–7. https://doi.org/10.2478/10004-1254-64-2013-2312.
Article
CAS
PubMed
Google Scholar
Marchitti SA, Chen Y, Thompson DC, Vasiliou V. Ultraviolet radiation: cellular antioxidant response and the role of ocular aldehyde dehydrogenase enzymes. Eye Contact Lens. 2011;37(4):206–13. https://doi.org/10.1097/ICL.0b013e3182212642.
Article
PubMed
PubMed Central
Google Scholar
Yamamoto M, Kensler TW, Motohashi H. The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev. 2018;98(3):1169–203. https://doi.org/10.1152/physrev.00023.2017.
Article
CAS
PubMed
Google Scholar
Re L, Martinez-Sanchez G, Bordicchia M, Malcangi G, Pocognoli A, Morales-Segura MA, et al. Is ozone pre-conditioning effect linked to Nrf2/EpRE activation pathway in vivo? A preliminary result. Eur J Pharmacol. 2014;742:158–62. https://doi.org/10.1016/j.ejphar.2014.08.029.
Article
CAS
PubMed
Google Scholar
Kropat C, Mueller D, Boettler U, Zimmermann K, Heiss EH, Dirsch VM, et al. Modulation of Nrf2-dependent gene transcription by bilberry anthocyanins in vivo. Mol Nutr Food Res. 2013;57(3):545–50. https://doi.org/10.1002/mnfr.201200504.
Article
CAS
PubMed
Google Scholar
Zhao Y, Xu G, Li H, Chang M, Guan Y, Li Y, et al. Overexpression of endogenous lipoic acid synthase attenuates pulmonary fibrosis induced by crystalline silica in mice. Toxicol Lett. 2020;323:57–66. https://doi.org/10.1016/j.toxlet.2020.01.023.
Article
CAS
PubMed
Google Scholar
Ranu H, Wilde M, Madden B. Pulmonary function tests. Ulster Med J. 2011;80(2):84–90.
PubMed
PubMed Central
Google Scholar
Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F, Casaburi R, et al. General considerations for lung function testing. Eur Respir J. 2005;26(1):153–61. https://doi.org/10.1183/09031936.05.00034505.
Article
CAS
PubMed
Google Scholar
Consortium TGO. Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res. 2017;45(D1):D331–8. https://doi.org/10.1093/nar/gkw1108.
Article
CAS
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36(Database issue):D480–4. https://doi.org/10.1093/nar/gkm882.
Article
CAS
PubMed
Google Scholar
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50. https://doi.org/10.1073/pnas.0506580102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4(1):2. https://doi.org/10.1186/1471-2105-4-2.
Article
PubMed
PubMed Central
Google Scholar
Azuaje FJ. Selecting biologically informative genes in co-expression networks with a centrality score. Biol Direct. 2014;9(1):12. https://doi.org/10.1186/1745-6150-9-12.
Article
PubMed
PubMed Central
Google Scholar
Abdelaziz R, Elkashef W, Said E. Tadalafil reduces airway hyperactivity and protects against lung and respiratory airways dysfunction in a rat model of silicosis. Int Immunopharmacol. 2016;40:530–41. https://doi.org/10.1016/j.intimp.2016.10.007.
Article
CAS
PubMed
Google Scholar
Lu Y, Sun Y, Liu Z, Lu Y, Zhu X, Lan B, et al. Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease. Sci Transl Med. 2020;12(554):eaba3613. https://doi.org/10.1126/scitranslmed.aba3613.
Zhu Z, Yang G, Wang Y, Yang J, Gao A, Niu P, et al. Suppression of thioredoxin system contributes to silica-induced oxidative stress and pulmonary fibrogenesis in rats. Toxicol Lett. 2013;222(3):289–94. https://doi.org/10.1016/j.toxlet.2013.08.004.
Article
CAS
PubMed
Google Scholar
Barbarin V, Arras M, Misson P, Delos M, McGarry B, Phan SH, et al. Characterization of the effect of interleukin-10 on silica-induced lung fibrosis in mice. Am J Respir Cell Mol Biol. 2004;31(1):78–85. https://doi.org/10.1165/rcmb.2003-0299OC.
Article
CAS
PubMed
Google Scholar
Nardi J, Nascimento S, Göethel G, Gauer B, Sauer E, Fão N, et al. Inflammatory and oxidative stress parameters as potential early biomarkers for silicosis. Clin Chim Acta. 2018;484:305–13. https://doi.org/10.1016/j.cca.2018.05.045.
Article
CAS
PubMed
Google Scholar
Liu H, Cheng Y, Yang J, Wang W, Fang S, Zhang W, et al. BBC3 in macrophages promoted pulmonary fibrosis development through inducing autophagy during silicosis. Cell Death Dis. 2017;8(3):e2657. https://doi.org/10.1038/cddis.2017.78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Faria ACD, Carvalho ARS, Guimarães ARM, Lopes AJ, Melo PL. Association of respiratory integer and fractional-order models with structural abnormalities in silicosis. Comput Methods Prog Biomed. 2019;172:53–63. https://doi.org/10.1016/j.cmpb.2019.02.003.
Article
Google Scholar
Cai W, Xu H, Zhang B, Gao X, Li S, Wei Z, et al. Differential expression of lncRNAs during silicosis and the role of LOC103691771 in myofibroblast differentiation induced by TGF-β1. Biomed Pharmacother. 2020;125:109980. https://doi.org/10.1016/j.biopha.2020.109980.
Article
CAS
PubMed
Google Scholar
Yao W, Yang P, Qi Y, Jin L, Zhao A, Ding M, et al. Transcriptome analysis reveals a protective role of liver X receptor alpha against silica particle-induced experimental silicosis. Sci Total Environ. 2020;747:141531. https://doi.org/10.1016/j.scitotenv.2020.141531.
Article
CAS
PubMed
Google Scholar
Su J, Morgani SM, David CJ, Wang Q, Er EE, Huang YH, et al. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature. 2020;577(7791):566–71. https://doi.org/10.1038/s41586-019-1897-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li N, Feng F, Wu K, Zhang H, Zhang W, Wang W. Inhibitory effects of astragaloside IV on silica-induced pulmonary fibrosis via inactivating TGF-β1/Smad3 signaling. Biomed Pharmacother. 2019;119:109387. https://doi.org/10.1016/j.biopha.2019.109387.
Article
CAS
PubMed
Google Scholar
Mohan V, Das A, Sagi I. Emerging roles of ECM remodeling processes in cancer. Semin Cancer Biol. 2020;62:192–200. https://doi.org/10.1016/j.semcancer.2019.09.004.
Article
CAS
PubMed
Google Scholar
Khadilkar RJ, Ho KYL, Venkatesh B, Tanentzapf G. Integrins modulate extracellular matrix organization to control cell signaling during hematopoiesis. Curr Biol. 2020;30:3316–29.e5.
Article
CAS
PubMed
Google Scholar
Mitsou I, Multhaupt HAB, Couchman JR. Proteoglycans, ion channels and cell-matrix adhesion. Biochem J. 2017;474(12):1965–79. https://doi.org/10.1042/BCJ20160747.
Article
CAS
PubMed
Google Scholar
Chai Y, Ito Y, Han J. TGF-beta signaling and its functional significance in regulating the fate of cranial neural crest cells. Crit Rev Oral Biol Med. 2003;14(2):78–88. https://doi.org/10.1177/154411130301400202.
Article
CAS
PubMed
Google Scholar
Aragón E, Wang Q, Zou Y, Morgani SM, Ruiz L, Kaczmarska Z, et al. Structural basis for distinct roles of SMAD2 and SMAD3 in FOXH1 pioneer-directed TGF-β signaling. Genes Dev. 2019;33(21-22):1506–24. https://doi.org/10.1101/gad.330837.119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng F, Li N, Cheng P, Zhang H, Wang H, Wang Y, et al. Tanshinone IIA attenuates silica-induced pulmonary fibrosis via inhibition of TGF-β1-Smad signaling pathway. Biomed Pharmacother. 2020;121:109586. https://doi.org/10.1016/j.biopha.2019.109586.
Article
CAS
PubMed
Google Scholar
Guo J, Yang Z, Jia Q, Bo C, Shao H, Zhang Z. Pirfenidone inhibits epithelial-mesenchymal transition and pulmonary fibrosis in the rat silicosis model. Toxicol Lett. 2019;300:59–66. https://doi.org/10.1016/j.toxlet.2018.10.019.
Article
CAS
PubMed
Google Scholar
Bakkebø M, Huse K, Hilden VI, Forfang L, Myklebust JH, Smeland EB, et al. SARA is dispensable for functional TGF-β signaling. FEBS Lett. 2012;586(19):3367–72. https://doi.org/10.1016/j.febslet.2012.07.027.
Article
CAS
PubMed
Google Scholar
Ramachandran A, Vizán P, Das D, Chakravarty P, Vogt J, Rogers KW. TGF-β uses a novel mode of receptor activation to phosphorylate SMAD1/5 and induce epithelial-to-mesenchymal transition. Elife. 2018;7:e31756.
Article
PubMed
PubMed Central
Google Scholar
Takebe Y, Tsujigiwa H, Katase N, Siar CH, Takabatake K, Fujii M, et al. Parenchyma-stromal interactions induce fibrosis by secreting CCN2 and promote osteoclastogenesis by stimulating RANKL and CD68 through activated TGF-β/BMP4 in ameloblastoma. J Oral Pathol Med. 2017;46(1):67–75. https://doi.org/10.1111/jop.12467.
Article
CAS
PubMed
Google Scholar
Liang D, Wang Y, Zhu Z, Yang G, An G, Li X, et al. BMP-7 attenuated silica-induced pulmonary fibrosis through modulation of the balance between TGF-β/Smad and BMP-7/Smad signaling pathway. Chem Biol Interact. 2016;243:72–81. https://doi.org/10.1016/j.cbi.2015.11.012.
Article
CAS
PubMed
Google Scholar
Chen M, Wan B, Zhu S, Zhang F, Jin J, Li X, et al. Geranylgeranyl diphosphate synthase deficiency aggravates lung fibrosis in mice by modulating TGF-β1/BMP-4 signaling. Biol Chem. 2019;400(12):1617–27. https://doi.org/10.1515/hsz-2019-0168.
Article
CAS
PubMed
Google Scholar
Maitra S, Das D, Ghosh P, Hajra S, Roy SS, Bhattacharya S. High cAMP attenuation of insulin-stimulated meiotic G2-M1 transition in zebrafish oocytes: interaction between the cAMP-dependent protein kinase (PKA) and the MAPK3/1 pathways. Mol Cell Endocrinol. 2014;393(1-2):109–19. https://doi.org/10.1016/j.mce.2014.06.008.
Article
CAS
PubMed
Google Scholar
Chu L, Wang T, Hu Y, Gu Y, Su Z, Jiang H. Activation of Egr-1 in human lung epithelial cells exposed to silica through MAPKs signaling pathways. PLoS One. 2013;8(7):e68943. https://doi.org/10.1371/journal.pone.0068943.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akhter N, Madhoun A, Arefanian H, Wilson A, Kochumon S, Thomas R, et al. Oxidative stress induces expression of the toll-like receptors (TLRs) 2 and 4 in the human peripheral blood mononuclear cells: implications for metabolic inflammation. Cell Physiol Biochem. 2019;53(1):1–18. https://doi.org/10.33594/000000117.
Article
CAS
PubMed
Google Scholar
Calzada MJ, Roberts DD. Novel integrin antagonists derived from thrombospondins. Curr Pharm Des. 2005;11(7):849-66. https://doi.org/10.2174/1381612053381792.
Mandarapu R, Prakhya BM. Exposure to cypermethrin and mancozeb alters the expression profile of THBS1, SPP1, FEZ1 and GPNMB in human peripheral blood mononuclear cells. J Immunotoxicol. 2016;13(4):463–73. https://doi.org/10.3109/1547691X.2015.1130088.
Article
CAS
PubMed
Google Scholar
Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol. 2018;11(1):64. https://doi.org/10.1186/s13045-018-0605-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pongcharoen P, Jinawath A, Tohtong R. Silencing of CD44 by siRNA suppressed invasion, migration and adhesion to matrix, but not secretion of MMPs, of cholangiocarcinoma cells. Clin Exp Metastasis. 2011;28(8):827–39. https://doi.org/10.1007/s10585-011-9414-8.
Article
CAS
PubMed
Google Scholar
Li S, Li C, Zhang Y, He X, Chen X, Zeng X, et al. Targeting mechanics-induced fibroblast activation through CD44-RhoA-YAP pathway ameliorates crystalline silica-induced silicosis. Theranostics. 2019;9(17):4993–5008. https://doi.org/10.7150/thno.35665.
Article
CAS
PubMed
PubMed Central
Google Scholar